On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups

被引:50
作者
Wang, LF
Wang, YM [1 ]
机构
[1] Zhongshan Univ, Lingnan Coll, Guangzhou 510275, Guangdong, Peoples R China
[2] Zhongshan Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
p-nilpotent group; saturated formation; semipermutable;
D O I
10.1080/00927870500346081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is called semipermutable if it is permutable with every subgroup K of G with (vertical bar H vertical bar, vertical bar K vertical bar) = 1. H is said to be s-semipermutable if it is permutable with every Sylow p-subgroup of G with (p, vertical bar H vertical bar) = 1. In this article, we investigate the p-nilpotency of a group for which every maximal subgroup of its Sylow p-subgroups is s-semipermutable for some prime p . We generalize some recent theorems in Guo and Shum (2003).
引用
收藏
页码:143 / 149
页数:7
相关论文
共 14 条
[1]  
Chen ZM., 1998, J MATH-UK, V18, P290
[2]  
Doerk K, 1992, Finite solvable groups
[3]  
Gorenstein D., 2007, FINITE GROUPS
[4]   On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups [J].
Guo, XY ;
Shum, KP .
ARCHIV DER MATHEMATIK, 2003, 80 (06) :561-569
[5]  
Lennox JC., 1987, Subnormal Subgroups of Groups
[6]  
Li DY, 2000, J PURE APPL ALGEBRA, V150, P53
[8]  
ROBINSON D J S, 1993, COURSE THEORY GROUPS
[9]   2 SUFFICIENT CONDITIONS FOR SUPERSOLVABILITY OF FINITE-GROUPS [J].
SRINIVASAN, S .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 35 (03) :210-214
[10]  
Thompson J.G., 1964, J. Algebra, V1, P43