Polynomial averages converge to the product of integrals

被引:46
作者
Frantzikinakis, N [1 ]
Kra, B [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Affine Transformation; Inverse Limit; Polynomial Sequence; Ergodic Average; Ergodic System;
D O I
10.1007/BF02775439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Vitaly Bergelson, showing that in a totally ergodic system, the average of a product of functions evaluated along polynomial times, with polynomials of pairwise differing degrees, converges in L-2 to the product of the integrals. Such averages are characterized by nilsystems and so we reduce the problem to one of uniform distribution of polynomial sequences on nilmanifolds.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 7 条
[1]   WEAKLY MIXING PET [J].
BERGELSON, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :337-349
[2]  
BERGELSON V, 1996, ERGODIC THEORY ZD AC, P1
[3]  
Furstenberg H, 1996, OHIO ST U M, V5, P193
[4]   ON AFFINE TRANSFORMATIONS OF COMPACT ABELIAN GROUPS [J].
HAHN, FJ .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (03) :428-&
[5]   Convergence of polynomial ergodic averages [J].
Host, B ;
Kra, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 149 (1) :1-19
[6]  
LEIBMAN A, IN PRESS ERGODIC THE
[7]  
Weyl H., 1916, MATH ANN, V77, P313, DOI 10.1007/BF01475864