Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients

被引:28
作者
Christensen, Anders Bossel Holst [1 ]
Just, Soren Andreas [2 ]
Andersen, Jakob Kristian Holm [1 ]
Savarimuthu, Thiusius Rajeeth [1 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, DK-5230 Odense, Denmark
[2] Odense Univ Hosp, Dept Rheumatol, Odense, Denmark
关键词
disease activity; rheumatoid arthritis; ultrasonography;
D O I
10.1136/annrheumdis-2019-216636
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives We have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-O MERAC T grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist. Methods The images were graded by an expert rheumatologist according to the EULAR-O MERAC T synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test. Results With 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%. Conclusions Using a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.
引用
收藏
页码:1189 / 1193
页数:5
相关论文
共 17 条
[1]   Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J].
Andersen, Jakob Kristian Holm ;
Pedersen, Jannik Skyttegaard ;
Laursen, Martin Sundahl ;
Holtz, Kathrine ;
Grauslund, Jakob ;
Savarimuthu, Thiusius Rajeeth ;
Just, Soren Andreas .
RMD OPEN, 2019, 5 (01)
[2]   2015 American College of Rheumatology Workforce Study: Supply and Demand Projections of Adult Rheumatology Workforce, 2015-2030 [J].
Battafarano, Daniel F. ;
Ditmyer, Marcia ;
Bolster, Marcy B. ;
Fitzgerald, John D. ;
Deal, Chad ;
Bass, Ann R. ;
Molina, Rodolfo ;
Erickson, Alan R. ;
Hausmann, Jonathan S. ;
Klein-Gitelman, Marisa ;
Imundo, Lisa F. ;
Smith, Benjamin J. ;
Jones, Karla ;
Greene, Kamilah ;
Monrad, Seetha U. .
ARTHRITIS CARE & RESEARCH, 2018, 70 (04) :617-626
[3]  
Combe Bernard, 2009, Best Pract Res Clin Rheumatol, V23, P59, DOI 10.1016/j.berh.2008.11.006
[4]  
D'Agostino MA, 2017, RMD OPEN, V3, DOI 10.1136/rmdopen-2016-000428
[5]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[6]   The United States rheumatology workforce - Supply and demand, 2005-2025 [J].
Deal, Chad L. ;
Hooker, Roderick ;
Harrington, Timothy ;
Birnbaum, Neal ;
Hogan, Paul ;
Bouchery, Ellen ;
Klein-Gitelman, Marisa ;
Barr, Walter .
ARTHRITIS AND RHEUMATISM, 2007, 56 (03) :722-729
[7]   Examination of intra and interrater reliability with a new ultrasonographic reference atlas for scoring of synovitis in patients with rheumatoid arthritis [J].
Hammer, Hilde Berner ;
Bolton-King, Pernille ;
Bakkeheim, Vivi ;
Berg, Torill Helene ;
Sundt, Elisabeth ;
Kongtorp, Anne Katrine ;
Haavardsholm, Espen A. .
ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 (11) :1995-1998
[8]   Comment on: Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritisanti-TNF [J].
Duran, E. ;
Yildirim, B. E. S. ;
Karadag, O. .
CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2023, 41 (09) :S8-S8
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]  
Kuhn M., 2013, Applied Predictive Modeling, P67