Accuracy and practical aspects of semi- and fully automatic segmentation methods for resected brain areas

被引:14
作者
Gau, Karin [1 ]
Schmidt, Charlotte S. M. [1 ,2 ]
Urbach, Horst [3 ]
Zentner, Josef [4 ]
Schulze-Bonhage, Andreas [1 ]
Kaller, Christoph P. [2 ,3 ]
Foit, Niels Alexander [2 ,4 ]
机构
[1] Univ Freiburg, Med Ctr, Fac Med, Epilepsy Ctr, Breisacher Str 64, D-79106 Freiburg, Germany
[2] Univ Freiburg, Med Ctr, Fac Med, Freiburg Brain Imaging, Freiburg, Germany
[3] Univ Freiburg, Med Ctr, Fac Med, Dept Neuroradiol, Freiburg, Germany
[4] Univ Freiburg, Med Ctr, Fac Med, Dept Neurosurg, Freiburg, Germany
关键词
Segmentation; Accuracy; Epilepsy surgery; Temporal lobe; STEREOTACTIC LASER AMYGDALOHIPPOCAMPOTOMY; STROKE LESIONS; DELINEATION; SCLEROSIS; CLASSIFICATION; IDENTIFICATION; NORMALIZATION; RECOGNITION; VALIDATION;
D O I
10.1007/s00234-020-02481-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose Precise segmentation of brain lesions is essential for neurological research. Specifically, resection volume estimates can aid in the assessment of residual postoperative tissue, e.g. following surgery for glioma. Furthermore, behavioral lesion-symptom mapping in epilepsy relies on accurate delineation of surgical lesions. We sought to determine whether semi- and fully automatic segmentation methods can be applied to resected brain areas and which approach provides the most accurate and cost-efficient results. Methods We compared a semi-automatic (ITK-SNAP) with a fully automatic (lesion_GNB) method for segmentation of resected brain areas in terms of accuracy with manual segmentation serving as reference. Additionally, we evaluated processing times of all three methods. We used T1w, MRI-data of epilepsy patients (n = 27; 11 m; mean age 39 years, range 16-69) who underwent temporal lobe resections (17 left). Results The semi-automatic approach yielded superior accuracy (p < 0.001) with a median Dice similarity coefficient (mDSC) of 0.78 and a median average Hausdorff distance (maHD) of 0.44 compared with the fully automatic approach (mDSC 0.58, maHD 1.32). There was no significant difference between the median percent volume difference of the two approaches (p > 0.05). Manual segmentation required more human input (30.41 min/subject) and therefore inferring significantly higher costs than semi- (3.27 min/subject) or fully automatic approaches (labor and cost approaching zero). Conclusion Semi-automatic segmentation offers the most accurate results in resected brain areas with a moderate amount of human input, thus representing a viable alternative compared with manual segmentation, especially for studies with large patient cohorts.
引用
收藏
页码:1637 / 1648
页数:12
相关论文
共 57 条
[1]   Cost function masking during normalization of brains with focal lesions: Still a necessity? [J].
Andersen, Sarah M. ;
Rapcsak, Steven Z. ;
Beeson, Pelagie M. .
NEUROIMAGE, 2010, 53 (01) :78-84
[2]   Voxel-based lesion-symptom mapping [J].
Bates, E ;
Wilson, SM ;
Saygin, AP ;
Dick, F ;
Sereno, MI ;
Knight, RT ;
Dronkers, NF .
NATURE NEUROSCIENCE, 2003, 6 (05) :448-450
[3]   A multidimensional segmentation evaluation for medical image data [J].
Cardenes, Ruben ;
de Luis-Garcia, Rodrigo ;
Bach-Cuadra, Meritxell .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 96 (02) :108-124
[4]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[5]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[6]   Fast semi-automated lesion demarcation in stroke [J].
de Haan, Bianca ;
Clas, Philipp ;
Juenger, Hendrik ;
Wilke, Marko ;
Karnath, Hans-Otto .
NEUROIMAGE-CLINICAL, 2015, 9 :69-74
[7]   Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study [J].
Deeley, M. A. ;
Chen, A. ;
Datteri, R. ;
Noble, J. H. ;
Cmelak, A. J. ;
Donnelly, E. F. ;
Malcolm, A. W. ;
Moretti, L. ;
Jaboin, J. ;
Niermann, K. ;
Yang, Eddy S. ;
Yu, David S. ;
Yei, F. ;
Koyama, T. ;
Ding, G. X. ;
Dawant, B. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4557-4577
[8]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[9]   MRI Segmentation of the Human Brain: Challenges, Methods, and Applications [J].
Despotovic, Ivana ;
Goossens, Bart ;
Philips, Wilfried .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
[10]   Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy [J].
Drane, Daniel L. ;
Loring, David W. ;
Voets, Natalie L. ;
Price, Michele ;
Ojemann, Jeffrey G. ;
Willie, Jon T. ;
Saindane, Amit M. ;
Phatak, Vaishali ;
Ivanisevic, Mirjana ;
Millis, Scott ;
Helmers, Sandra L. ;
Miller, John W. ;
Meador, Kimford J. ;
Gross, Robert E. .
EPILEPSIA, 2015, 56 (01) :101-113