Nonlinear normal modes in pendulum systems

被引:12
|
作者
Klimenko, A. A. [1 ]
Mikhlin, Y. V. [1 ]
Awrejcewicz, J. [2 ]
机构
[1] Natl Tech Univ KPI, Dept Appl Math, Kharkov, Ukraine
[2] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
关键词
Pendulum systems; Nonlinear normal modes;
D O I
10.1007/s11071-012-0496-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Dynamics of the spring pendulum and of the system containing a pendulum absorber is considered by using the nonlinear normal modes' theory and the asymptotic-numeric procedures. This makes it possible to investigate the pendulum dynamics for both the small and large vibration amplitudes. The vibration modes stability is analyzed by different methods. Regions of the nonlinear normal modes' stability/instability are obtained. The nonlinear normal modes' approach and the modified Rauscher method are used to construct forced vibration modes in the system with a pendulum absorber.
引用
收藏
页码:797 / 813
页数:17
相关论文
共 50 条
  • [11] Asymptotic construction of nonlinear normal modes for continuous systems
    Andrianov, I. V.
    NONLINEAR DYNAMICS, 2008, 51 (1-2) : 99 - 109
  • [12] NORMAL-MODES OF VIBRATION FOR NONLINEAR CONTINUOUS SYSTEMS
    SHAW, SW
    PIERRE, C
    JOURNAL OF SOUND AND VIBRATION, 1994, 169 (03) : 319 - 347
  • [13] Numerical calculation of nonlinear normal modes in structural systems
    Thomas D. Burton
    Nonlinear Dynamics, 2007, 49 : 425 - 441
  • [14] Nonlinear normal modes in electrodynamic systems: A nonperturbative approach
    A. V. Kudrin
    O. A. Kudrina
    E. Yu. Petrov
    Journal of Experimental and Theoretical Physics, 2016, 122 : 995 - 1001
  • [15] Numerical calculation of nonlinear normal modes in structural systems
    Burton, Thomas D.
    NONLINEAR DYNAMICS, 2007, 49 (03) : 425 - 441
  • [16] Bayesian model updating of nonlinear systems using nonlinear normal modes
    Song, Mingming
    Renson, Ludovic
    Noel, Jean-Philippe
    Moaveni, Babak
    Kerschen, Gaetan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (12):
  • [17] WILBERFORCE PENDULUM OSCILLATIONS AND NORMAL-MODES
    BERG, RE
    MARSHALL, TS
    AMERICAN JOURNAL OF PHYSICS, 1991, 59 (01) : 32 - 38
  • [18] Nonlinear Normal Modes of Strongly Nonlinear Periodically Excited Piecewise Linear Systems
    Uspensky B.V.
    Avramov K.V.
    Journal of Mathematical Sciences, 2017, 226 (2) : 104 - 113
  • [19] Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
    Avramov, Konstantin V.
    Mikhlin, Yuri V.
    APPLIED MECHANICS REVIEWS, 2013, 65 (02)
  • [20] On the nonlinear normal modes of free vibration of piecewise linear systems
    Uspensky, B. V.
    Avramov, K. V.
    JOURNAL OF SOUND AND VIBRATION, 2014, 333 (14) : 3252 - 3265