Nonlinear normal modes in pendulum systems

被引:12
|
作者
Klimenko, A. A. [1 ]
Mikhlin, Y. V. [1 ]
Awrejcewicz, J. [2 ]
机构
[1] Natl Tech Univ KPI, Dept Appl Math, Kharkov, Ukraine
[2] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
关键词
Pendulum systems; Nonlinear normal modes;
D O I
10.1007/s11071-012-0496-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Dynamics of the spring pendulum and of the system containing a pendulum absorber is considered by using the nonlinear normal modes' theory and the asymptotic-numeric procedures. This makes it possible to investigate the pendulum dynamics for both the small and large vibration amplitudes. The vibration modes stability is analyzed by different methods. Regions of the nonlinear normal modes' stability/instability are obtained. The nonlinear normal modes' approach and the modified Rauscher method are used to construct forced vibration modes in the system with a pendulum absorber.
引用
收藏
页码:797 / 813
页数:17
相关论文
共 50 条
  • [1] Nonlinear normal modes in pendulum systems
    A. A. Klimenko
    Y. V. Mikhlin
    J. Awrejcewicz
    Nonlinear Dynamics, 2012, 70 : 797 - 813
  • [2] Bayesian model updating of nonlinear systems using nonlinear normal modes
    Song, Mingming
    Renson, Ludovic
    Noel, Jean-Philippe
    Moaveni, Babak
    Kerschen, Gaetan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (12)
  • [3] Numerical calculation of nonlinear normal modes in structural systems
    Burton, Thomas D.
    NONLINEAR DYNAMICS, 2007, 49 (03) : 425 - 441
  • [4] Numerical calculation of nonlinear normal modes in structural systems
    Thomas D. Burton
    Nonlinear Dynamics, 2007, 49 : 425 - 441
  • [5] Nonlinear normal modes of structural systems via asymptotic approach
    Lacarbonara, W
    Camillacci, R
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (20) : 5565 - 5594
  • [6] NONLINEAR NORMAL-MODES, INVARIANCE, AND MODAL DYNAMICS APPROXIMATIONS OF NONLINEAR-SYSTEMS
    BOIVIN, N
    PIERRE, C
    SHAW, SW
    NONLINEAR DYNAMICS, 1995, 8 (03) : 315 - 346
  • [7] Experimental evidence of bifurcating nonlinear normal modes in piecewise linear systems
    Giannini, Oliviero
    Casini, Paolo
    Vestroni, Fabrizio
    NONLINEAR DYNAMICS, 2011, 63 (04) : 655 - 666
  • [8] Experimental evidence of bifurcating nonlinear normal modes in piecewise linear systems
    Oliviero Giannini
    Paolo Casini
    Fabrizio Vestroni
    Nonlinear Dynamics, 2011, 63 : 655 - 666
  • [9] Extended invariant cones as Nonlinear Normal Modes of inhomogeneous piecewise linear systems
    Karoui, A. Yassine
    Leine, Remco I.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 174
  • [10] A computational algebraic geometry technique for determining nonlinear normal modes of structural systems
    Petromichelakis, Ioannis
    Kougioumtzoglou, Ioannis A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 135