iTRAQ-based quantitative proteomic analysis ofSargassum fusiformein response to high temperature stress

被引:5
|
作者
Liu, Lijie [1 ,2 ,3 ]
Lin, Lidong [3 ]
Ma, Zengling [4 ]
Wang, Guangce [1 ]
Wu, Mingjiang [4 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Ctr Ocean Mega Sci, Key Lab Expt Marine Biol, 7 Nanhai Rd, Qingdao 266071, Shandong, Peoples R China
[2] Qiqihar Univ, Coll Life Sci & Agr Forestry, Qiqihar, Heilongjiang, Peoples R China
[3] Marine & Fishery Dev Res Ctr Dongtou Dist Wenzhou, Wenzhou, Zhejiang, Peoples R China
[4] Wenzhou Univ, Coll Life & Environm Sci, Chashan Univ Town, Wenzhou, Zhejiang, Peoples R China
关键词
high temperature; iTRAQ; proteomics; Sargassum fusiforme; SHOCK-PROTEIN; 90; PHOTOSYSTEM-II; MOLECULAR-MECHANISMS; HEAT TOLERANCE; DNAJ PROTEIN; PLANTS; PHOTOSYNTHESIS; EXPRESSION; NETWORKS; ROLES;
D O I
10.1111/are.14880
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Global warming increases seawater temperature, causing high temperature stress to marine organisms, including algae. This study aimed to explore the global proteomic response ofSargassum fusiformeunder high temperature stress.Sargassum fusiformeseedlings were cultured in natural seawater for 24 hr and subjected to different temperatures (22 degrees C, control group; 27 degrees C and 32 degrees C, high temperature stress group) for 1, 3, 5 and 7 days. Changes in their membrane lipid peroxidation after high temperature stress were investigated. Proteomic changes in the air bladders ofS. fusiformewere analysed using isobaric tags for relative and absolute quantification, along with liquid chromatography-tandem mass spectrometry. Data were analysed using bioinformatics methods. Results showed that high temperature stress destroyed the cell membrane of the air bladders. Further, 28 and 53 differentially expressed proteins (DEPs) were found in the 27 degrees C and 32 degrees C treatment groups respectively. These DEPs were mainly involved in glycolysis, single-organism catabolism, purine nucleoside diphosphate metabolism and carbohydrate catabolism. In addition, DEPs were significantly enriched in 10 pathways, such as glycolytic process, biosynthesis of antibiotics, ribosome, biosynthesis of secondary metabolites and biosynthesis of amino acids. Proteomics analyses indicated that proteins associated with synthesis, folding, degradation, photosynthesis and energy and carbohydrate metabolism are differentially expressed under high temperature stress and normal conditions.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 50 条
  • [31] iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in retinoblastoma
    Cheng, Yong
    Meng, Qingyu
    Huang, Lvzhen
    Shi, Xuan
    Hou, Jing
    Li, Xiaoxin
    Liang, Jianhong
    ONCOLOGY LETTERS, 2017, 14 (06) : 8084 - 8091
  • [32] iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in pterygia
    Linghu, Dandan
    Guo, Lili
    Zhao, Yinghua
    Liu, Zhiming
    Zhao, Mingwei
    Huang, Lvzhen
    Li, Xiaoxin
    PROTEOMICS CLINICAL APPLICATIONS, 2017, 11 (7-8)
  • [33] ITRAQ-based quantitative proteomic analysis of Fusarium moniliforme (Fusarium verticillioides) in response to Phloridzin inducers
    Rong Zhang
    Weitao Jiang
    Xin Liu
    Yanan Duan
    Li Xiang
    Yanfang Wang
    Yuanmao Jiang
    Xiang Shen
    Xuesen Chen
    Chengmiao Yin
    Zhiquan Mao
    Proteome Science, 19
  • [34] iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice
    Xiong, Qiangqiang
    Zhong, Lei
    Shen, Tianhua
    Cao, Chaohao
    He, Haohua
    Chen, Xiaorong
    BMC GENOMICS, 2019, 20 (01)
  • [35] ITRAQ-based quantitative proteomic analysis of Fusarium moniliforme (Fusarium verticillioides) in response to Phloridzin inducers
    Zhang, Rong
    Jiang, Weitao
    Liu, Xin
    Duan, Yanan
    Xiang, Li
    Wang, Yanfang
    Jiang, Yuanmao
    Shen, Xiang
    Chen, Xuesen
    Yin, Chengmiao
    Mao, Zhiquan
    PROTEOME SCIENCE, 2021, 19 (01)
  • [36] iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice
    Qiangqiang Xiong
    Lei Zhong
    Tianhua Shen
    Chaohao Cao
    Haohua He
    Xiaorong Chen
    BMC Genomics, 20
  • [37] iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature
    Mu, Qilin
    Zhang, Wenying
    Zhang, Yunbo
    Yan, Haoliang
    Liu, Ke
    Matsui, Tsutomu
    Tian, Xiaohai
    Yang, Pingfang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (09)
  • [38] iTRAQ-based proteomic analysis of the rat striatum in response to methamphetamine preconditioning
    Lu, Shuang
    Yang, Yandi
    Liao, Lvshuang
    Yan, Weitao
    Xiong, Kun
    Yan, Jie
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2021, 53 (05) : 636 - 639
  • [39] iTRAQ-based proteomic and physiological analyses of mustard sprouts in response to heat stress
    Cheng, Chao
    Liu, Yin
    Fang, Weiming
    Tao, Jun
    Yang, Zhengfei
    Yin, Yongqi
    RSC ADVANCES, 2020, 10 (10) : 6052 - 6062
  • [40] iTRAQ-Based Quantitative Proteomic Analysis of Cotton Roots and Leaves Reveals Pathways Associated with Salt Stress
    Chen, Tingting
    Zhang, Lei
    Shang, Haihong
    Liu, Shaodong
    Peng, Jun
    Gong, Wankui
    Shi, Yuzhen
    Zhang, Siping
    Li, Junwen
    Gong, Juwu
    Ge, Qun
    Liu, Aiying
    Ma, Huijuan
    Zhao, Xinhua
    Yuan, Youlu
    PLOS ONE, 2016, 11 (02):