A first-principles study of gas adsorption on monolayer AlN sheet

被引:53
作者
Wang, Yusheng [1 ,3 ]
Song, Nahong [2 ,3 ]
Song, Xiaoyan [1 ]
Zhang, Tianjie [1 ]
Yang, Dapeng [1 ]
Li, Meng [4 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450046, Henan, Peoples R China
[2] Henan Univ Econ & Law, Coll Comp & Informat Engn, Zhengzhou 450000, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Phys & Engn, Int Joint Res Lab Quantum Funct Mat Henan, Zhengzhou 450001, Henan, Peoples R China
[4] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Henan, Peoples R China
关键词
Monolayer AlN; CO2; capture; Separation; Gas sensor; TOTAL-ENERGY CALCULATIONS; HYDROGEN STORAGE; CO2; CAPTURE; GRAPHENE; DFT; MOLECULES; SURFACE; SENSITIVITY; NANOTUBES; CALCIUM;
D O I
10.1016/j.vacuum.2017.10.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The monolayer AlN is one of graphene-like 2D material. On the basis of density functional theory (DFT) calculations, the adsorption of CO2, CO, H-2, N-2, CH4, O-2 and NO on the monolayer AlN was investigated. Due to the dipole moment of the Al-N bond, the gas molecules can be adsorbed directly on the AlN sheet. This avoids the problem about formation of metal clusters using metal decorated carbon nanostructures as gas storage materials. Among all the gas molecules, only CO2 on the AlN sheet has strong interaction with adsorption energy of 0.91 eV. While other gas molecules bind to the AlN sheet much weakly with the adsorption energy being less than 0.5 eV. Due to the charge transfer between gas molecules and the AlN sheet, the AlN sheet can be used to gas sensors for CO2, CO, H-2, O-2 and NO. Moreover, the AlN sheet can be taken potential applications as sorbent materials for CO2 separation and capture from gas mixture. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 47 条
  • [1] High-capacity hydrogen storage by metallized graphene
    Ataca, C.
    Akturk, E.
    Ciraci, S.
    Ustunel, H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (04)
  • [2] Extra dimensions in photon-induced two lepton final states at the CERN LHC
    Atag, S.
    Inan, S. C.
    Sahin, I.
    [J]. PHYSICAL REVIEW D, 2009, 80 (07):
  • [3] DFT study of NO2 adsorption on the AlN nanocones
    Bagheri, Zargham
    Peyghan, Ali Ahmadi
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2013, 1008 : 20 - 26
  • [4] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [5] Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide
    Beheshtian, Javad
    Peyghan, Ali Ahmadi
    Bagheri, Zargham
    [J]. JOURNAL OF MOLECULAR MODELING, 2013, 19 (06) : 2197 - 2203
  • [6] Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states
    Belabbes, A.
    de Carvalho, L. C.
    Schleife, A.
    Bechstedt, F.
    [J]. PHYSICAL REVIEW B, 2011, 84 (12)
  • [7] Calcium-Based Functionalization of Carbon Materials for CO2 Capture: A First-Principles Computational Study
    Cazorla, C.
    Shevlin, S. A.
    Guo, Z. X.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (22) : 10990 - 10995
  • [8] Defects in hexagonal-AlN sheets by first-principles calculations
    de Almeida Junior, E. F.
    de Brito Mota, F.
    de Castilho, C. M. C.
    Kakanakova-Georgieva, A.
    Gueorguiev, G. K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (01)
  • [9] Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties
    dos Santos, Renato B.
    de Brito Mota, F.
    Rivelino, R.
    Kakanakova-Georgieva, A.
    Gueorguiev, G. K.
    [J]. NANOTECHNOLOGY, 2016, 27 (14)
  • [10] First principle studies of zigzag AlN nanoribbon
    Du, A. J.
    Zhu, Z. H.
    Chen, Y.
    Lu, G. Q.
    Smith, Sean C.
    [J]. CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) : 183 - 185