Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features

被引:121
作者
Giannini, V. [1 ,2 ]
Mazzetti, S. [1 ,2 ]
Bertotto, I. [1 ]
Chiarenza, C. [1 ]
Cauda, S. [3 ]
Delmastro, E. [4 ]
Bracco, C. [5 ]
Di Dia, A. [5 ]
Leone, F. [6 ]
Medico, E. [7 ]
Pisacane, A. [8 ]
Ribero, D. [9 ]
Stasi, M. [5 ]
Regge, D. [1 ,2 ]
机构
[1] FPO IRCCS, Imaging Unit, Candiolo Canc Inst, Str Prov 142 Km 3-95, I-10060 Candiolo, TO, Italy
[2] Univ Turin, Dept Surg Sci, I-10124 Turin, Italy
[3] FPO IRCCS, Nucl Med Unit, Candiolo Canc Inst, Candiolo, Italy
[4] FPO IRCCS, Radiat Therapy Unit, Candiolo Canc Inst, Candiolo, Italy
[5] FPO IRCCS, Med Phys Unit, Candiolo Canc Inst, Candiolo, Italy
[6] FPO IRCCS, Med Oncol Unit, Candiolo Canc Inst, Candiolo, Italy
[7] FPO IRCCS, Lab Oncogen, Candiolo Canc Inst, Candiolo, Italy
[8] FPO IRCCS, Pathol Unit, Candiolo Canc Inst, Candiolo, Italy
[9] FPO IRCCS, Hepatobiliopancreat & Colorectal Surg Unit, Candiolo Canc Inst, Candiolo, Italy
关键词
Locally advanced rectal cancer; F-18-FDG PET; CT imaging; Magnetic resonance imaging; Texture features; Prediction of treatment response; Radiomics; CT TEXTURE ANALYSIS; TUMOR HETEROGENEITY; PATHOLOGICAL RESPONSE; CHEMORADIOTHERAPY; ASSOCIATION; PERFORMANCE; BIOMARKERS; PARAMETERS;
D O I
10.1007/s00259-018-4250-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposePathological complete response (pCR) following neoadjuvant chemoradiotherapy or radiotherapy in locally advanced rectal cancer (LARC) is reached in approximately 15-30% of cases, therefore it would be useful to assess if pretreatment of F-18-FDG PET/CT and/or MRI texture features can reliably predict response to neoadjuvant therapy in LARC.MethodsFifty-two patients were dichotomized as responder (pR+) or non-responder (pR-) according to their pathological tumor regression grade (TRG) as follows: 22 as pR+ (nine with TRG=1, 13 with TRG=2) and 30 as pR- (16 with TRG=3, 13 with TRG=4 and 1 with TRG=5). First-order parameters and 21 second-order texture parameters derived from the Gray-Level Co-Occurrence matrix were extracted from semi-automatically segmented tumors on T2w MRI, ADC maps, and PET/CT acquisitions. The role of each texture feature in predicting pR+ was assessed with monoparametric and multiparametric models.ResultsIn the mono-parametric approach, PET homogeneity reached the maximum AUC (0.77; sensitivity=72.7% and specificity=76.7%), while PET glycolytic volume and ADC dissimilarity reached the highest sensitivity (both 90.9%). In the multiparametric analysis, a logistic regression model containing six second-order texture features (five from PET and one from T2w MRI) yields the highest predictivity in distinguish between pR+ and pR- patients (AUC=0.86; sensitivity=86%, and specificity=83% at the Youden index).ConclusionsIf preliminary results of this study are confirmed, pretreatment PET and MRI could be useful to personalize patient treatment, e.g., avoiding toxicity of neoadjuvant therapy in patients predicted pR-.
引用
收藏
页码:878 / 888
页数:11
相关论文
共 40 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 2016, NCCN Clin Pract Guidel Oncol
[3]   FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 [J].
Boellaard, Ronald ;
O'Doherty, Mike J. ;
Weber, Wolfgang A. ;
Mottaghy, Felix M. ;
Lonsdale, Markus N. ;
Stroobants, Sigrid G. ;
Oyen, Wim J. G. ;
Kotzerke, Joerg ;
Hoekstra, Otto S. ;
Pruim, Jan ;
Marsden, Paul K. ;
Tatsch, Klaus ;
Hoekstra, Corneline J. ;
Visser, Eric P. ;
Arends, Bertjan ;
Verzijlbergen, Fred J. ;
Zijlstra, Josee M. ;
Comans, Emile F. I. ;
Lammertsma, Adriaan A. ;
Paans, Anne M. ;
Willemsen, Antoon T. ;
Beyer, Thomas ;
Bockisch, Andreas ;
Schaefer-Prokop, Cornelia ;
Delbeke, Dominique ;
Baum, Richard P. ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (01) :181-200
[4]   An Adaptive Thresholding Method for BTV Estimation Incorporating PET Reconstruction Parameters: A Multicenter Study of the Robustness and the Reliability [J].
Brambilla, M. ;
Matheoud, R. ;
Basile, C. ;
Bracco, C. ;
Castiglioni, I. ;
Cavedon, C. ;
Cremonesi, M. ;
Morzenti, S. ;
Fioroni, F. ;
Giri, M. ;
Botta, F. ;
Gallivanone, F. ;
Grassi, E. ;
Pacilio, M. ;
De Ponti, E. ;
Stasi, M. ;
Pasetto, S. ;
Valzano, S. ;
Zanni, D. .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
[5]   Textural Parameters of Tumor Heterogeneity in 18F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer [J].
Bundschuh, Ralph A. ;
Dinges, Julia ;
Neumann, Larissa ;
Seyfried, Martin ;
Zsoter, Norbert ;
Papp, Laszlo ;
Rosenberg, Robert ;
Becker, Karen ;
Astner, Sabrina T. ;
Henninger, Martin ;
Herrmann, Ken ;
Ziegler, Sibylle I. ;
Schwaiger, Markus ;
Essler, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (06) :891-897
[6]  
Chizi B, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P93, DOI 10.1007/0-387-25465-X_5
[7]   An analysis of co-occurrence texture statistics as a function of grey level quantization [J].
Clausi, DA .
CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) :45-62
[8]   Challenges and Promises of PET Radiomics [J].
Cook, Gary J. R. ;
Azad, Gurdip ;
Owczarczyk, Kasia ;
Siddique, Musib ;
Goh, Vicky .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :1083-1089
[9]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[10]   Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer [J].
Cusumano, Davide ;
Dinapoli, Nicola ;
Boldrini, Luca ;
Chiloiro, Giuditta ;
Gatta, Roberto ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Casa, Calogero ;
Damiani, Andrea ;
Azario, Luigi ;
Van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2018, 123 (04) :286-295