A novel 9-class auditory ERP paradigm driving a predictive text entry system

被引:108
作者
Hoehne, Johannes [1 ]
Schreuder, Martijn [1 ]
Blankertz, Benjamin [1 ,2 ]
Tangermann, Michael [1 ]
机构
[1] Berlin Inst Technol, Machine Learning Lab, D-10587 Berlin, Germany
[2] Fraunhofer FIRST, Dept Intelligent Data Anal, Berlin, Germany
关键词
brain-computer interface; BCI; auditory ERP; P300; N200; spatial auditory stimuli; T9; user-centered design; BRAIN-COMPUTER INTERFACE; P300 SPELLING SYSTEM; PEOPLE; STATE;
D O I
10.3389/fnins.2011.00099
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-computer interfaces (BCIs) based on event related potentials (ERPs) strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using auditory evoked potentials for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low) and direction (left/middle/right) and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single nine-class decision plus two additional decisions to confirm a spelled word. This paradigm - called PASS2D - was investigated in an online study with 12 healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits/min) which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like people with amyotrophic lateral sclerosis disease in a late stage.
引用
收藏
页数:10
相关论文
共 42 条
  • [21] A Brain-Computer Interface (BCI) System Based on Auditory Stream Segregation
    Kanoh, Shin'ichiro
    Miyamoto, Ko-ichiro
    Yoshinobu, Tatsuo
    [J]. 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 642 - 645
  • [22] Classification of selective attention to auditory stimuli: Toward vision-free brain-computer interfacing
    Kim, Do-Won
    Hwang, Han-Jeong
    Lim, Jeong-Hwan
    Lee, Yong-Ho
    Jung, Ki-Young
    Im, Chang-Hwan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2011, 197 (01) : 180 - 185
  • [23] Motivation modulates the P300 amplitude during brain-computer interface use
    Kleih, S. C.
    Nijboer, F.
    Halder, S.
    Kuebler, A.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2010, 121 (07) : 1023 - 1031
  • [24] Toward a high-throughput auditory P300-based brain-computer interface
    Klobassa, D. S.
    Vaughan, T. M.
    Brunner, P.
    Schwartz, N. E.
    Wolpaw, J. R.
    Neuper, C.
    Sellers, E. W.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2009, 120 (07) : 1252 - 1261
  • [25] Toward enhanced P300 speller performance
    Krusienski, D. J.
    Sellers, E. W.
    McFarland, D. J.
    Vaughan, T. M.
    Wolpaw, J. R.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 15 - 21
  • [26] A Brain-Computer Interface Controlled Auditory Event-Related Potential (P300) Spelling System for Locked-In Patients
    Kuebler, Andrea
    Furdea, Adrian
    HaIder, Sebastian
    Hammer, Eva Maria
    Nijboer, Femke
    Kotchoubey, Boris
    [J]. DISORDERS OF CONSCIOUSNESS, 2009, 1157 : 90 - 100
  • [27] Lateralization, connectivity and plasticity in the human central auditory system
    Langers, DRM
    van Dijk, P
    Backes, WH
    [J]. NEUROIMAGE, 2005, 28 (02) : 490 - 499
  • [28] Gaze independent brain-computer speller with covert visual search tasks
    Liu, Yang
    Zhou, Zongtan
    Hu, Dewen
    [J]. CLINICAL NEUROPHYSIOLOGY, 2011, 122 (06) : 1127 - 1136
  • [29] Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges
    Millan, J. D. R.
    Rupp, R.
    Mueller-Putz, G. R.
    Murray-Smith, R.
    Giugliemma, C.
    Tangermann, M.
    Vidaurre, C.
    Cincotti, F.
    Kubler, A.
    Leeb, R.
    Neuper, C.
    Mueller, K. -R.
    Mattia, D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2010, 4
  • [30] Machine learning for real-time single-trial EEG-analysis:: From brain-computer interfacing to mental state monitoring
    Mueller, Klaus-Robert
    Tangermann, Michael
    Dornhege, Guido
    Krauledat, Matthias
    Curio, Gabriel
    Blankertz, Benjamin
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 82 - 90