Meta-heuristics for Improved RF Emitter Localization

被引:1
作者
Engebraten, Sondre A. [1 ,2 ]
Moen, Jonas [1 ]
Glette, Kyrre [1 ,2 ]
机构
[1] Norwegian Def Res Estab, POB 25, N-2027 Kjeller, Norway
[2] Univ Oslo, POB 1080, N-0316 Oslo, Norway
来源
APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II | 2017年 / 10200卷
关键词
Search heuristics; Continuous optimization; Multilateration; TRILATERATION; EVOLUTION; LOCATION;
D O I
10.1007/978-3-319-55792-2_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Locating Radio Frequency (RF) emitters can be done with a number of methods, but cheap and widely available sensors make the Power Difference of Arrival (PDOA) technique a prominent choice. Predicting the location of an unknown RF emitter can be seen as a continuous optimization problem, minimizing the error w.r.t. the sensor measurements gathered. Most instances of this problem feature multimodality, making these challenging to solve. This paper presents an analysis of the performance of evolutionary computation and other meta-heuristic methods on this real-world problem. We applied the Nelder-Mead method, Genetic Algorithm, Covariance Matrix Adaptation Evolutionary Strategies, Particle Swarm Optimization and Differential Evolution. The use of meta-heuristics solved the minimization problem more efficiently and precisely, compared to brute force search, potentially allowing for a more widespread use of the PDOA method. To compare algorithms two different metrics were proposed: average distance miss and median distance miss, giving insight into the algorithms' performance. Finally, the use of an adaptive mutation step proved important.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 2007, ANTENNAS PROPAGATION
[2]  
[Anonymous], P IEEE INT C EV COMP
[4]  
Eberhart R., 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Cat. No.95TH8079), P39, DOI 10.1109/MHS.1995.494215
[5]  
Eiben A.E., 2015, INTRO EVOLUTIONARY C
[6]  
Engebraten S. A., 2015, THESIS
[7]  
Fortin FA, 2012, J MACH LEARN RES, V13, P2171
[8]  
Goldber D. E., 1988, Machine Learning, V3, P95, DOI 10.1023/A:1022602019183
[9]   Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) [J].
Hansen, N ;
Muller, SD ;
Koumoutsakos, P .
EVOLUTIONARY COMPUTATION, 2003, 11 (01) :1-18
[10]  
Huning A., 1976, Evolutionsstrategie. optimierung technischer systeme nach prinzipien der biologischen evolution