Stock Price Prediction Using Time Convolution Long Short-Term Memory Network

被引:12
作者
Zhan, Xukuan [1 ]
Li, Yuhua [1 ]
Li, Ruixuan [1 ]
Gu, Xiwu [1 ]
Habimana, Olivier [1 ]
Wang, Haozhao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I | 2018年 / 11061卷
基金
中国国家自然科学基金;
关键词
Time convolution; Long Short-Term Memory (LSTM); Stock price prediction; MARKET VOLATILITY;
D O I
10.1007/978-3-319-99365-2_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The time series of stock prices are non-stationary and non-linear, making the prediction of future price trends much challenging. Inspired by Convolutional Neural Network (CNN), we make convolution on the time dimension to capture the long-term fluctuation features of stock series. To learn long-term dependencies of stock prices, we combine the time convolution with Long Short-Term Memory (LSTM), and propose a novel deep learning model named Time Convolution Long Short-Term Memory (TC-LSTM) networks. TC-LSTM can obtain the stock longer data dependence and overall change pattern. The experiments on two real market datasets demonstrate that the proposed model outperforms other three baseline models in the mean square error.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 13 条
[1]   Stock Market Volatility and Learning [J].
Adam, Klaus ;
Marcet, Albert ;
Nicolini, Juan Pablo .
JOURNAL OF FINANCE, 2016, 71 (01) :33-82
[2]   Stock Price Prediction Using the ARIMA Model [J].
Adebiyi, Ayodele A. ;
Adewumi, Aderemi O. ;
Ayo, Charles K. .
2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, :106-112
[3]  
Akita R., 2016, P IEEE ACIS 15 INT C, P1, DOI [DOI 10.1109/ICIS.2016.7550882, 10.1109/ICIS.2016.7550882]
[4]   A deep learning framework for financial time series using stacked autoencoders and long-short term memory [J].
Bao, Wei ;
Yue, Jun ;
Rao, Yulei .
PLOS ONE, 2017, 12 (07)
[5]  
Cho K., 2014, ARXIV, DOI 10.3115/v1/w14-4012
[6]  
Gao Q., THESIS U MISSOURI CO
[7]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[8]  
Hochreiter S, 2001, Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, P237, DOI [10.1109/9780470544037.ch14, DOI 10.1109/9780470544037.CH14]
[9]  
Huynh H.D., 2017, P 8 INT S INF COMM T, P57, DOI DOI 10.1145/3155133.3155202
[10]   Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques [J].
Patel, Jigar ;
Shah, Sahil ;
Thakkar, Priyank ;
Kotecha, K. .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (01) :259-268