Resource Theory of Quantum States Out of Thermal Equilibrium

被引:471
作者
Brandao, Fernando G. S. L. [1 ,2 ]
Horodecki, Michal [3 ,4 ]
Oppenheim, Jonathan [5 ]
Renes, Joseph M. [6 ,7 ]
Spekkens, Robert W. [8 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
[4] Natl Quantum Informat Ctr Gdansk, PL-81824 Sopot, Poland
[5] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[6] Tech Univ Darmstadt, Inst Angew Phys, D-64289 Darmstadt, Germany
[7] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[8] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevLett.111.250404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.
引用
收藏
页数:5
相关论文
共 21 条
  • [11] Locking entanglement with a single qubit
    Horodecki, K
    Horodecki, M
    Horodecki, P
    Oppenheim, J
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [12] Are the laws of entanglement theory thermodynamical?
    Horodecki, M
    Oppenheim, J
    Horodecki, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24) : 240403 - 240403
  • [13] Reversible transformations from pure to mixed states and the unique measure of information
    Horodecki, M
    Horodecki, P
    Oppenheim, J
    [J]. PHYSICAL REVIEW A, 2003, 67 (06): : 9
  • [14] Fundamental limitations for quantum and nanoscale thermodynamics
    Horodecki, Michal
    Oppenheim, Jonathan
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [15] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [16] Quasi-order of clocks and their synchronism and quantum bounds for copying timing information
    Janzing, D
    Beth, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 230 - 240
  • [17] Thermodynamic cost of reliability and low temperatures: Tightening Landauer's principle and the second law
    Janzing, D
    Wocjan, P
    Zeier, R
    Geiss, R
    Beth, T
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (12) : 2717 - 2753
  • [18] The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations
    Marvian, Iman
    Spekkens, Robert W.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [19] Thermodynamical approach to quantifying quantum correlations
    Oppenheim, J
    Horodecki, M
    Horodecki, P
    Horodecki, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (18)
  • [20] Schumacher Benjamin., 2010, Quantum Processes, Systems, and Information