Electric Vehicle Design Optimization: Integration of a High-Fidelity Interior-Permanent-Magnet Motor Model

被引:59
作者
Ahn, Kukhyun [1 ]
Bayrak, Alparslan Emrah [1 ]
Papalambros, Panos Y. [1 ,2 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Integrated Syst & Design, Ann Arbor, MI 48109 USA
关键词
Design optimization; electric vehicle (EV); motor design; optimal design; vehicle electrification; EFFICIENT GLOBAL OPTIMIZATION; WHEEL MOTOR; SYSTEM; ALGORITHM;
D O I
10.1109/TVT.2014.2363144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The simulation-based design optimization of an electric-vehicle (EV) propulsion system requires integration of a system model with detailed models of the components. In particular, a high-fidelity interior-permanent-magnet (IPM) motor model is necessary to capture important physical effects, such as magnetic saturation. The system optimization challenge is to maintain adequate model fidelity with acceptable computational cost. This paper proposes a design method that incorporates a high-fidelity motor, high-voltage power electronics, and vehicle propulsion simulation models in a system design optimization formulation that maximizes energy efficiency of a compact EV on a given drive cycle. The resulting optimal design and associated energy efficiency for a variety of drive cycles and performance requirements are presented and discussed.
引用
收藏
页码:3870 / 3877
页数:8
相关论文
共 32 条
[1]  
Ahn K., 2011, P IEEE VPPC, P1
[2]   Homogeneous charge compression ignition technology implemented in a hybrid electric vehicle: System optimal design and benefit analysis for a power-split architecture [J].
Ahn, Kukhyun ;
Whitefoot, John ;
Babajimopoulos, Aris ;
Ortiz-Soto, Elliott ;
Papalambros, Panos Y. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2013, 227 (01) :87-98
[3]   Constraint Management of Reduced Representation Variables in Decomposition-Based Design Optimization [J].
Alexander, Michael J. ;
Allison, James T. ;
Papalambros, Panos Y. ;
Gorsich, David J. .
JOURNAL OF MECHANICAL DESIGN, 2011, 133 (10)
[4]  
Allison J., 2008, THESIS U MICHIGAN AN
[5]   Optimization approach to hybrid electric propulsion system design [J].
Assanis, D ;
Delagrammatikas, G ;
Fellini, R ;
Filipi, Z ;
Liedtke, J ;
Michelena, N ;
Papalambros, P ;
Reyes, D ;
Rosenbaum, D ;
Sales, A ;
Sasena, M .
MECHANICS OF STRUCTURES AND MACHINES, 1999, 27 (04) :393-421
[6]   EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings [J].
Bandler, JW ;
Cheng, QS ;
Gebre-Mariam, DH ;
Madsen, K ;
Pedersen, F ;
Sondergaard, J .
2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, :1003-1006
[7]   PM-assisted reluctance synchronous motor/generator (PM-RSM) for mild hybrid vehicles: Electromagnetic design [J].
Boldea, I ;
Tutelea, L ;
Pitic, CI .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2004, 40 (02) :492-498
[8]  
Chin YK, 2003, IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, P1035, DOI 10.1109/IEMDC.2003.1210362
[9]  
Choi G, 2013, 2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P54
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197