FE heterogeneous multiscale method for long-time wave propagation

被引:13
作者
Abdulle, Assyr [1 ]
Grote, Marcus J. [2 ]
Stohrer, Christian [2 ]
机构
[1] Ecole Polytech Fed Lausanne, ANMC, Sect Math, CH-1015 Lausanne, Switzerland
[2] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
关键词
HOMOGENIZATION;
D O I
10.1016/j.crma.2013.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects of the true solution at a cost similar to that of a standard numerical homogenization scheme which, however, only captures the short-time macroscale behavior of the wave field. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:495 / 499
页数:5
相关论文
共 14 条
[11]   DISPERSIVE EFFECTIVE MODELS FOR WAVES IN HETEROGENEOUS MEDIA [J].
Lamacz, Agnes .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (09) :1871-1899
[12]   Numerical homogenization of the acoustic wave equations with a continuum of scales [J].
Owhadi, Houman ;
Zhang, Lei .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (3-4) :397-406
[13]   A DISPERSIVE EFFECTIVE MEDIUM FOR WAVE-PROPAGATION IN PERIODIC COMPOSITES [J].
SANTOSA, F ;
SYMES, WW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (04) :984-1005
[14]   Operator upscaling for the acoustic wave equation [J].
Vdovina, T ;
Minkoff, SE ;
Korostyshevskaya, O .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1305-1338