FE heterogeneous multiscale method for long-time wave propagation

被引:13
作者
Abdulle, Assyr [1 ]
Grote, Marcus J. [2 ]
Stohrer, Christian [2 ]
机构
[1] Ecole Polytech Fed Lausanne, ANMC, Sect Math, CH-1015 Lausanne, Switzerland
[2] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
关键词
HOMOGENIZATION;
D O I
10.1016/j.crma.2013.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects of the true solution at a cost similar to that of a standard numerical homogenization scheme which, however, only captures the short-time macroscale behavior of the wave field. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:495 / 499
页数:5
相关论文
共 14 条
[1]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[2]   Finite difference heterogeneous multi-scale method for homogenization problems [J].
Abdulle, A ;
Weinan, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) :18-39
[3]  
Abdulle A., 2009, MULTIPLE SCALES PROB, V31, P133
[4]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87
[5]   FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION [J].
Abdulle, Assyr ;
Grote, Marcus J. .
MULTISCALE MODELING & SIMULATION, 2011, 9 (02) :766-792
[6]  
[Anonymous], 2011, SER CONT APPL MATH C
[7]  
Brahim-Otsmane S., J MATH PURES APPL, V71, P197
[8]  
Dohnal T., 201301 TU DORTM
[9]  
Engquist B, 2012, LECT NOTES COMP SCI, V82, P167
[10]  
Holst H., 2011, TECHNICAL REPORT