Stacking of 2D Materials

被引:238
作者
Guo, Hao-Wei [1 ,2 ]
Hu, Zhen [1 ,2 ]
Liu, Zhi-Bo [1 ,2 ,3 ,4 ]
Tian, Jian-Guo [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Teda Appl Phys Inst, Minist Educ, Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
美国国家科学基金会;
关键词
2D materials; heterostructures; nanotechnology; stacking; twistronics; CHEMICAL-VAPOR-DEPOSITION; DER-WAALS HETEROSTRUCTURES; TWISTED BILAYER GRAPHENE; CVD-GROWN GRAPHENE; FEW-LAYER GRAPHENE; HIGH-QUALITY; EPITAXIAL-GROWTH; SINGLE-LAYER; MECHANICAL EXFOLIATION; ELECTRONIC-PROPERTIES;
D O I
10.1002/adfm.202007810
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D layered materials have sparked great interest from the perspective of basic physics and applied science in the past few years. Extraordinarily, many novel stacked structures that bring versatile properties and applications can be artificially assembled, as exemplified by vertical van der Waals (vdW) heterostructures, twisted multilayer 2D materials, hybrid dimensional structures, etc. Compared with the ordinary synthesis process, the stacking technique is a powerful strategy to achieve high-quality and freely controlled 2D material stacked structures with atomic accuracy. This review highlights the most advanced stacking techniques involving the preparation, transfer, and stacking of high-quality single crystal 2D materials. Apart from the 2D-2D stacked structures, 2D-0D, 2D-1D, and 2D-3D structures offer a prospective platform for the increasing application of 2D materials. The assembly strategy and physical properties of these stacked structures strongly depend on the factors in the stacking process, including the surface quality, angle control, and sample size. In addition, comparative analysis tables on the techniques involved are also available. The summary of these strategies and techniques will hopefully provide a valuable reference for relevant work.
引用
收藏
页数:32
相关论文
共 205 条
[1]   Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy [J].
Alem, Nasim ;
Erni, Rolf ;
Kisielowski, Christian ;
Rossell, Marta D. ;
Gannett, Will ;
Zettl, A. .
PHYSICAL REVIEW B, 2009, 80 (15)
[2]   Square ice in graphene nanocapillaries [J].
Algara-Siller, G. ;
Lehtinen, O. ;
Wang, F. C. ;
Nair, R. R. ;
Kaiser, U. ;
Wu, H. A. ;
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2015, 519 (7544) :443-+
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[4]   Anodic bonded graphene [J].
Balan, Adrian ;
Kumar, Rakesh ;
Boukhicha, Mohamed ;
Beyssac, Olivier ;
Bouillard, Jean-Claude ;
Taverna, Dario ;
Sacks, William ;
Marangolo, Massimiliano ;
Lacaze, Emanuelle ;
Gohler, Roger ;
Escoffier, Walter ;
Poumirol, Jean-Marie ;
Shukla, Abhay .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (37)
[5]   Ballistic Transport Exceeding 28 μm in CVD Grown Graphene [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Goldsche, Matthias ;
Watanabe, Kenji ;
Taniguch, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
NANO LETTERS, 2016, 16 (02) :1387-1391
[6]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[7]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[8]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[9]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[10]   In Situ TEM Observation of a Microcrucible Mechanism of Nanowire Growth [J].
Boston, Rebecca ;
Schnepp, Zoe ;
Nemoto, Yoshihiro ;
Sakka, Yoshio ;
Hall, Simon R. .
SCIENCE, 2014, 344 (6184) :623-626