A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport

被引:126
|
作者
Knoope, M. M. J. [1 ]
Ramirez, A. [1 ]
Faaij, A. P. C. [1 ]
机构
[1] Univ Utrecht, Copernicus Inst Sustainable Dev, Energy & Resources Grp, NL-3584 CD Utrecht, Netherlands
关键词
CO2; pipeline; Transport; Booster stations; Cost model; CCS; CARBON-DIOXIDE; NATURAL-GAS; CONSTRUCTION; COMPANIES; CAPTURE; SCALE; PROFITS; PUSH;
D O I
10.1016/j.ijggc.2013.01.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to provide a systematic overview and comparison of capital and O&M costs models for CO2 pipelines and booster stations currently available in literature. Our findings indicate significantly large cost ranges for the results provided by the different cost models. Two main types of capital cost models for pipeline transport were found in literature, models relating diameter to costs and models relating mass flow to costs. For the nine diameter based models examined, a capital cost range is found of, for instance, 0.8-5.5 M(sic)(2010)/km for a pipeline diameter of 0.8 m and a length of 25 km. For the five mass flow based cost models evaluated in this study, a cost range is found of, for instance, 0.9-2.1 M(sic)(2010)/km for a mass flow of 750 kg/s over 25 km (TRUNK-25). An important additional factor is that all capital costs models for CO2 pipeline transport, directly or indirectly, depend on the diameter. Therefore, a systematic overview is made of the various equations and parameter used to calculate the diameter. By applying these equations and parameters to a common mass flow, height difference and length result in diameters between 0.59 and 0.91 m for TRUNK-25. The main reason for this range was different assumptions about specific pressure drop and velocity. Combining the range for diameter, mass flow and diameter based cost models gives a capital and levelized cost range which varied by a factor 10 for a given mass flow and length. The levelized cost range will further increase if the discrepancy in O&M costs is added, for which estimations vary between 4.5 and 75 (sic)/m/year for a pipeline diameter of 0.8 m. On top of this, most cost models underestimate the capital costs of CO2 pipelines. Only two cost models (namely the models who relate the costs to the weight of the pipeline) take into account the higher material requirements which are typically required for CO2 pipelines. The other sources use existing onshore natural gas pipelines as the basis for their cost estimations, and thereby underestimating the material costs for CO2 pipelines. Additionally, most cost models are based on relatively old pipelines constructed in the United States in the 1990s and early 2000s and do not consider the large increase in material prices in the last several years. Furthermore, key model characteristics are identified for a general cost comparison of CCS with other technologies and a system analysis overtime. For a general cost comparison of CCS with other technologies, pipeline cost models with parameters which have physical or economic meaning are the preferred option. These are easy to interpret and can be adjusted to new conditions. A linear cost model is an example of such an model. For a system analysis over time, it is advised to adapt a pipeline cost model related to the weight of the pipeline, which is the only cost model that specifically models thickness of the pipeline and include material prices, to incorporate the effect of impurities and pipeline technology development. For modeling booster station costs, a relation between capacity and costs including some economies of scale seems to be the most appropriate. However, the cost range found in literature is very large, for instance, 3.1-3.6 M(sic)(2010) for a booster station with a capacity of 1.25 MWe. Therefore, validation of the booster station cost is required before such models are applied in further research. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:241 / 270
页数:30
相关论文
共 50 条
  • [1] Techno-economic evaluation of the effects of impurities on conditioning and transport of CO2 by pipeline
    Skaugen, Geir
    Roussanaly, Simon
    Jakobsen, Jana
    Brunsvold, Amy
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 54 : 627 - 639
  • [2] Preparation and pipeline transport of CO2 as a hydrate slurry - Modelling and techno-economic analysis
    Fernandes, Isabel S.
    Domingos, Mariana G.
    Costa, Marcelo F.
    Santos, Ricardo J.
    Lopes, Jose Carlos B.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 205
  • [3] Techno-economic analysis for biomass supply chain: A state-of-the-art review
    Lo, Shirleen Lee Yuen
    How, Bing Shen
    Leong, Wei Dong
    Teng, Sin Yong
    Rhamdhani, Muhammad Akbar
    Sunarso, Jaka
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 135
  • [4] Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model
    Kang, Kwangu
    Seo, Youngkyun
    Chang, Daejun
    Kang, Seong-Gil
    Huh, Cheol
    ENERGIES, 2015, 8 (03) : 2176 - 2196
  • [5] Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review
    Bhatt, Ankita
    Khanchandani, Mitali
    Rana, Mohit Singh
    Prajapati, Sanjeev Kumar
    JOURNAL OF CLEANER PRODUCTION, 2022, 370
  • [6] Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network
    Luo, Xiaobo
    Wang, Meihong
    Oko, Eni
    Okezue, Chima
    APPLIED ENERGY, 2014, 132 : 610 - 620
  • [7] A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems
    McIlwaine, Neil
    Foley, Aoife M.
    Morrow, D. John
    Al Kez, Dlzar
    Zhang, Chongyu
    Lu, Xi
    Best, Robert J.
    ENERGY, 2021, 229
  • [8] Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems
    Cui, Yuanlong
    Zhang, Fan
    Shao, Yiming
    Twaha, Ssennoga
    Tong, Hui
    SUSTAINABILITY, 2022, 14 (17)
  • [9] Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants
    Rezvani, S.
    Moheimani, N. R.
    Bahri, P. A.
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 84 : 290 - 301
  • [10] Techno-economic analysis and energy management strategies for micro gas turbines: A state-of-the-art review
    Weerakoon, A. H. Samitha
    Assadi, Mohsen
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 24