Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice

被引:21
作者
Wang, Jing
Sjoeberg, Sara
Tia, Viviane
Secco, Blandine
Chen, Han
Yang, Min
Sukhova, Galina K.
Shi, Guo-Ping [1 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
基金
瑞典研究理事会; 美国国家卫生研究院;
关键词
Mast cell; Atherosclerosis; Cromolyn; C48/80; LDL receptor-deficient mice; CYSTEINE PROTEASE CATHEPSINS; PROMOTE ATHEROSCLEROSIS; TRYPTASE; CHYMASE; ACTIVATION; MECHANISMS; PROGRESSION; INHIBITION;
D O I
10.1016/j.atherosclerosis.2013.05.025
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mast cells (MCs) contribute to atherogenesis by releasing pro-inflammatory mediators to activate vascular cells and other inflammatory cells. This study examined whether MC activation or stabilization affects diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. When Ldlr(-/-) mice consumed an atherogenic diet for 3 or 6 months, MC activation with compound 48/80 (C48/80) increased aortic arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels, whereas MC stabilization with cromolyn reduced these parameters. There were significant differences in arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels between C48/80-treated and cromolyn-treated mice. To examine a therapeutic application of cromolyn in atherosclerosis, we fed Ldlr(-/-) mice an atherogenic diet for 3 months followed by giving mice cromolyn for additional 3 months. Cromolyn did not affect aortic arch intima area, but significantly reduced lipid deposition in the thoracic-abdominal aortas. In aortic arches, however, cromolyn treatment significantly reduced lesion contents of Mac-3(+) macrophages, CD4(+) T cells, activated MCs, and lesion cell proliferation. While plasma total cholesterol and LDL levels increased and high-density lipoprotein (HDL) levels decreased from 3 months to 6 months of an atherogenic diet, cromolyn treatment decreased significantly plasma total cholesterol, LDL, and triglyceride levels and increased HDL levels above those of 3-month time point. These observations demonstrate that MC stabilization reduces lesion inflammation, ameliorates plasma lipid profiles, and may serve as a potential therapy for this cardiovascular disease. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:304 / 309
页数:6
相关论文
共 50 条
  • [21] Cysteamine Decreases Low-Density Lipoprotein Oxidation, Causes Regression of Atherosclerosis, and Improves Liver and Muscle Function in Low-Density Lipoprotein Receptor-Deficient Mice
    Ahmad, Feroz
    Mitchell, Robert D.
    Houben, Tom
    Palo, Angela
    Yadati, Tulasi
    Parnell, Andrew J.
    Patel, Ketan
    Shiri-Sverdlov, Ronit
    Leake, David S.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (18):
  • [22] Lactobacillus reuteri attenuates cardiac injury without lowering cholesterol in low-density lipoprotein receptor-deficient mice fed standard chow
    Koppinger, Matthew Perry
    Lopez-Pier, Marissa Anne
    Skaria, Rinku
    Harris, Preston Royal
    Konhilas, John P.
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2020, 319 (01): : H32 - H41
  • [23] Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in Low-density Lipoprotein Receptor-deficient Mice
    Subramanian, Venkateswaran
    Uchida, Haruhito A.
    Ijaz, Talha
    Moorleghen, Jessica J.
    Howatt, Deborah A.
    Balakrishnan, Anju
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2012, 59 (01) : 66 - 76
  • [24] Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice
    Pan, JH
    Sukhova, GK
    Yang, JT
    Wang, B
    Xie, T
    Fu, HX
    Zhang, X
    Satoskar, AR
    David, JR
    Metz, CN
    Bucala, R
    Fang, K
    Simon, DI
    Chapman, HA
    Libby, P
    Shi, GP
    CIRCULATION, 2004, 109 (25) : 3149 - 3153
  • [25] Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice
    Foks, Amanda C.
    Engelbertsen, Daniel
    Kuperwaser, Felicia
    Alberts-Grill, Noah
    Gonen, Ayelet
    Witztum, Joseph L.
    Lederer, James
    Jarolim, Petr
    DeKruyff, Rosemarie H.
    Freeman, Gordon J.
    Lichtman, Andrew H.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36 (03) : 456 - 465
  • [26] Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice
    Hou Jing
    Lu Yong
    Liu Haiyan
    Ma Yanjun
    Xing Yun
    Zhang Yu
    Li Taiming
    Cao Rongyue
    Jin Liang
    Wu Jie
    Zong Li
    Liu Jingjing
    VACCINE, 2011, 29 (24) : 4102 - 4109
  • [27] Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice
    van Wanrooij, Eva J. A.
    van Puijvelde, Gijs H. M.
    de Vos, Paula
    Yagita, Hideo
    van Berkel, Theo J. C.
    Kuiper, Johan
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (01) : 204 - 210
  • [28] HIV Protein Tat Induces Macrophage Dysfunction and Atherosclerosis Development in Low-Density Lipoprotein Receptor-Deficient Mice
    Meng, Zhaojie
    Hernandez, Rebecca
    Liu, Jingwei
    Gwag, Taesik
    Lu, Weiwei
    Hsiai, Tzung K.
    Kaul, Marcus
    Zhou, Tong
    Zhou, Changcheng
    CARDIOVASCULAR DRUGS AND THERAPY, 2022, 36 (02) : 201 - 215
  • [29] Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor-deficient mice with established vascular lesions
    Cyrus, T
    Yao, YM
    Rokach, J
    Tang, LX
    Praticò, D
    CIRCULATION, 2003, 107 (04) : 521 - 523
  • [30] Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice
    Fukao, H
    Ijiri, Y
    Miura, M
    Hashimoto, M
    Yamashita, T
    Fukunaga, C
    Oiwa, K
    Kawai, Y
    Suwa, M
    Yamamoto, J
    BLOOD COAGULATION & FIBRINOLYSIS, 2004, 15 (06) : 441 - 446