Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators

被引:11
作者
Zhang, Junqiang [1 ]
Cao, Jun [2 ]
Jiang, Renjin [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310032, Zhejiang, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2015年 / 67卷 / 05期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
degenerate elliptic operator; Hardy space; square function; maximal function; molecule; Riesz transform; WEIGHTED NORM INEQUALITIES; INHOMOGENEOUS DIRICHLET; HARMONIC FUNCTIONS; L-P; REGULARITY; BOUNDS;
D O I
10.4153/CJM-2014-038-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w be either in the Muckenhoupt class of A(2)(R-n) weights or in the class of QC(R-n) weights, and let L-w := -w(-1) div(A del) be the degenerate elliptic operator on the Euclidean space R-n, n >= 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space H-Lw(p) (R-n) associated with L-w for p epsilon (0, 1], and when p epsilon (n/n+1,1] and w epsilon A(q0) (R-n) with q(0) epsilon [1, p(n+1)/n), the authors prove that the associated Riesz transform del L-w(-1/2) is bounded from H-Lw(p) (R-n) to the weighted classical Hardy space H-w(p)(R-n).
引用
收藏
页码:1161 / 1200
页数:40
相关论文
共 37 条
[11]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[12]   Gaussian bounds for degenerate parabolic equations [J].
Cruz-Uribe, D. ;
Rios, Cristian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (02) :283-312
[13]  
Cruz-Uribe D, 2012, T AM MATH SOC, V364, P3449
[14]   UNIFORMLY ELLIPTIC-OPERATORS WITH MEASURABLE COEFFICIENTS [J].
DAVIES, EB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 132 (01) :141-169
[15]  
Duoandikoetxea J., 2001, GRADUATE STUDIES MAT, V29
[16]   New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications [J].
Duong, XT ;
Yan, LX .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1375-1420
[17]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[18]   Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems [J].
Duong, Xuan Thinh ;
Hofmann, Steve ;
Mitrea, Donna ;
Mitrea, Marius ;
Yan, Lixin .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) :183-236
[19]   Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus [J].
Duong, Xuan Thinh ;
Li, Ji .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) :1409-1437
[20]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116