Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators

被引:11
作者
Zhang, Junqiang [1 ]
Cao, Jun [2 ]
Jiang, Renjin [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310032, Zhejiang, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2015年 / 67卷 / 05期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
degenerate elliptic operator; Hardy space; square function; maximal function; molecule; Riesz transform; WEIGHTED NORM INEQUALITIES; INHOMOGENEOUS DIRICHLET; HARMONIC FUNCTIONS; L-P; REGULARITY; BOUNDS;
D O I
10.4153/CJM-2014-038-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w be either in the Muckenhoupt class of A(2)(R-n) weights or in the class of QC(R-n) weights, and let L-w := -w(-1) div(A del) be the degenerate elliptic operator on the Euclidean space R-n, n >= 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space H-Lw(p) (R-n) associated with L-w for p epsilon (0, 1], and when p epsilon (n/n+1,1] and w epsilon A(q0) (R-n) with q(0) epsilon [1, p(n+1)/n), the authors prove that the associated Riesz transform del L-w(-1/2) is bounded from H-Lw(p) (R-n) to the weighted classical Hardy space H-w(p)(R-n).
引用
收藏
页码:1161 / 1200
页数:40
相关论文
共 37 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]  
[Anonymous], 1986, Proc. Centre Math. Anal. Austral. Nat. Univ.
[3]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[4]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (02) :265-316
[5]   Orlicz-Hardy spaces associated to operators satisfying bounded H∞ functional calculus and Davies-Gaffney estimates [J].
Bui The Anh ;
Li, Ji .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :485-501
[6]   WEIGHTED LOCAL ORLICZ-HARDY SPACES ON DOMAINS AND THEIR APPLICATIONS IN INHOMOGENEOUS DIRICHLET AND NEUMANN PROBLEMS [J].
Cao, Jun ;
Chang, Der-Chen ;
Yang, Dachun ;
Yang, Sibei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (09) :4729-4809
[7]   SOME WEIGHTED NORM INEQUALITIES FOR THE AREA INTEGRAL [J].
CHANILLO, S ;
WHEEDEN, RL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (02) :277-294
[8]   BOUNDEDNESS FOR THE SOLUTIONS OF A DEGENERATE PARABOLIC EQUATION [J].
CHIARENZA, F ;
FRASCA, M .
APPLICABLE ANALYSIS, 1984, 17 (04) :243-261
[9]  
Chiarenza F., 1985, REND SEM MAT U PADOV, V73, P179
[10]  
Chiarenza Filippo, 1987, MATEMATICHE CATANIA, V42, P163