Liouville theorem and classification of positive solutions for a fractional Choquard type equation

被引:28
作者
Phuong Le [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fractional Choquard equations; Liouville theorems; Classification of positive solutions; HARTREE-EQUATIONS; REGULARITY; UNIQUENESS; EXISTENCE; STATE;
D O I
10.1016/j.na.2019.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 2, 0 < alpha < 2 and 0 < beta < n. We prove that the equation (- Delta)(alpha/2) u = (1/vertical bar x vertical bar(n-beta) * u(p)) u(p-1) in R-n has no positive solution if 1 <= p < n+beta/n-alpha. We also classify all positive solutions to the equation in the critical case p = n+beta/n-alpha. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 33 条
[1]   Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay [J].
Belchior, P. ;
Bueno, H. ;
Miyagaki, O. H. ;
Pereira, G. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 :38-53
[2]  
Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
[3]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[4]  
Bouchard J., 1990, PHYS REP, V195
[5]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[6]  
Chen W., 2010, AIMS Series on Di ff erential Equations & Dynamical Systems
[7]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[8]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[9]  
Constantin P., 2006, LECT NOTES MATH, V1871
[10]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476