Anisotropic Laplace-Beltrami Operators for Shape Analysis

被引:22
作者
Andreux, Mathieu [1 ]
Rodola, Emanuele [2 ]
Aubry, Mathieu [3 ]
Cremers, Daniel [2 ]
机构
[1] Ecole Polytech, Palaiseau, France
[2] Tech Univ Munich, D-80290 Munich, Germany
[3] Univ Paris Est LIGM, Ecole Ponts Paristech, Champs Sur Marne, France
来源
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT IV | 2015年 / 8928卷
关键词
Shape analysis; Anisotropic diffusion; Curvature; Non-rigid matching; Segmentation; Laplace-Beltrami operator; DIFFUSION;
D O I
10.1007/978-3-319-16220-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh processing (e.g. surface regularization), focusing on the Laplacian itself, rather than on the diffusion process it induces, opens the possibility to effectively replace the omnipresent Laplace-Beltrami operator in many shape analysis methods. After providing a mathematical formulation and analysis of this new operator, we derive a practical implementation on discrete meshes. Further, we demonstrate the effectiveness of our new operator when employed in conjunction with different methods for shape segmentation and matching.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 2003, Visualization and Mathematics III. Mathematics and Visualization
[2]  
[Anonymous], COMPUTER GRAPHICS FO
[3]  
[Anonymous], 2014, IEEE C COMP VIS PATT
[4]  
Aubry M, 2011, IEEE I CONF COMP VIS, P1411, DOI 10.1109/ICCV.2011.6126396
[5]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[6]  
Boucher M, 2011, LECT NOTES COMPUT SC, V6801, P271, DOI 10.1007/978-3-642-22092-0_23
[7]  
Bronstein A.M., 2010, P EUROGRAPHICS WORKS
[8]  
Bronstein AM, 2008, MONOGR COMPUT SCI, P1, DOI 10.1007/978-0-387-73301-2_1
[9]   Anisotropic geometric diffusion in surface processing [J].
Clarenz, U ;
Diewald, U ;
Rumpf, M .
VISUALIZATION 2000, PROCEEDINGS, 2000, :397-405
[10]  
Cohen-Steiner D, 2003, P 19 ANN S COMP GEOM, P312