Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials

被引:28
作者
Cameron, Stephen [1 ]
Silvestre, Luis [1 ]
Snelson, Stanley [1 ]
机构
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2018年 / 35卷 / 03期
关键词
Landau equation; A priori estimates; C-ALPHA REGULARITY; ULTRAPARABOLIC EQUATIONS; BOLTZMANN-EQUATION; CLASSICAL-SOLUTIONS; CUTOFF; BOUNDS;
D O I
10.1016/j.anihpc.2017.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a priori upper bounds for solutions to the spatially inhomogeneous Landau equation in the case of moderately soft potentials, with arbitrary initial data, under the assumption that mass, energy and entropy densities stay under control. Our pointwise estimates decay polynomially in the velocity variable. We also show that if the initial data satisfies a Gaussian upper bound, this bound is propagated for all positive times. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:625 / 642
页数:18
相关论文
共 23 条
[1]   On the Landau approximation in plasma physics [J].
Alexandre, R ;
Villani, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :61-95
[2]   SOME A PRIORI ESTIMATES FOR THE HOMOGENEOUS LANDAU EQUATION WITH SOFT POTENTIALS [J].
Alexandre, Radjesvarane ;
Liao, Jie ;
Lin, Chunjin .
KINETIC AND RELATED MODELS, 2015, 8 (04) :617-650
[3]  
[Anonymous], 1981, COURSE THEORETICAL P
[4]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[5]  
Chapman S, 1970, The Mathematical Theory of Non-uniform Gases
[6]   Entropy dissipation estimates for the Landau equation in the Coulomb case and applications [J].
Desvillettes, L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) :1359-1403
[7]   On the spatially homogeneous landau equation for hard potentials - Part I: Existence, uniqueness and smoothness [J].
Desvillettes, L ;
Villani, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) :179-259
[8]   Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation [J].
Gamba, I. M. ;
Panferov, V. ;
Villani, C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (01) :253-282
[9]  
Golse F., 2017, ANN SC NORM IN PRESS
[10]   GLOBAL CLASSICAL SOLUTIONS OF THE BOLTZMANN EQUATION WITHOUT ANGULAR CUT-OFF [J].
Gressman, Philip T. ;
Strain, Robert M. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :771-847