Positome: A Method for Improving Protein-Protein Interaction Quality and Prediction Accuracy

被引:0
作者
Dick, Kevin [1 ]
Dehne, Frank [2 ]
Golshani, Ashkan [3 ]
Green, James R. [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
[3] Carleton Univ, Inst Biochem, Dept Biol, Ottawa, ON, Canada
来源
2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB) | 2017年
关键词
protein-protein interaction prediction; data quality; datasets; data provenance; machine learning; INTERACTION DATABASE; NETWORK; INTACT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The progressive elucidation of positive protein-protein interactions (PPIs) as wet-lab techniques continue to improve in both throughput and precision has increased the number and quality of known PPIs across the spectrum of life. Creating high quality datasets of positive PPIs is critical for training PPI prediction algorithms and for assessing the performance of PPI detection efforts. We present the Positome, a web service to acquire sets of positive PPIs based on user-defined criteria pertaining to data provenance including interaction type, throughput level, and detection method selection in addition to filtration by multiple lines of evidence (i.e. PPIs reported by independent research groups). The Positome provides a tunable interface to obtain a specified subset of interacting PPIs from the BioGRID database. Both intra-and inter-species PPIs are supported. Using a number of model organisms, we demonstrate the trade-off between data quality and quantity, and the benefit of higher data quality on PPI prediction precision and recall. A web interface and REST web service are available at http://bioinf.sce.carleton.ca/POSITOME/.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 45 条
[1]  
Amos-Binks A., BINDING SITE PREDICT
[2]  
[Anonymous], 2007, MOL SYST BIOL
[3]   PSICQUIC and PSISCORE: accessing and scoring molecular interactions [J].
Aranda, Bruno ;
Blankenburg, Hagen ;
Kerrien, Samuel ;
Brinkman, Fiona S. L. ;
Ceol, Arnaud ;
Chautard, Emilie ;
Dana, Jose M. ;
De Las Rivas, Javier ;
Dumousseau, Marine ;
Galeota, Eugenia ;
Gaulton, Anna ;
Goll, Johannes ;
Hancock, Robert E. W. ;
Isserlin, Ruth ;
Jimenez, Rafael C. ;
Kerssemakers, Jules ;
Khadake, Jyoti ;
Lynn, David J. ;
Michaut, Magali ;
O'Kelly, Gavin ;
Ono, Keiichiro ;
Orchard, Sandra ;
Prieto, Carlos ;
Razick, Sabry ;
Rigina, Olga ;
Salwinski, Lukasz ;
Simonovic, Milan ;
Velankar, Sameer ;
Winter, Andrew ;
Wu, Guanming ;
Bader, Gary D. ;
Cesareni, Gianni ;
Donaldson, Ian M. ;
Eisenberg, David ;
Kleywegt, Gerard J. ;
Overington, John ;
Ricard-Blum, Sylvie ;
Tyers, Mike ;
Albrecht, Mario ;
Hermjakob, Henning .
NATURE METHODS, 2011, 8 (07) :528-529
[4]  
Attrill H., 2015, NUCL ACIDS
[5]   The arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome [J].
Berardini, Tanya Z. ;
Reiser, Leonore ;
Li, Donghui ;
Mezheritsky, Yarik ;
Muller, Robert ;
Strait, Emily ;
Huala, Eva .
GENESIS, 2015, 53 (08) :474-485
[6]  
Blohm P., 2013, NUCL ACIDS
[7]  
Bult C., 2016, NUCL ACIDS
[8]   MINT: the molecular INTeraction database [J].
Chatr-aryamontri, Andrew ;
Ceol, Arnaud ;
Palazzi, Luisa Montecchi ;
Nardelli, Giuliano ;
Schneider, Maria Victoria ;
Castagnoli, Luisa ;
Cesareni, Gianni .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D572-D574
[9]   The BioGRID interaction database: 2017 update [J].
Chatr-aryamontri, Andrew ;
Oughtred, Rose ;
Boucher, Lorrie ;
Rust, Jennifer ;
Chang, Christie ;
Kolas, Nadine K. ;
O'Donnell, Lara ;
Oster, Sara ;
Theesfeld, Chandra ;
Sellam, Adnane ;
Stark, Chris ;
Breitkreutz, Bobby-Joe ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D369-D379
[10]  
Dick K., 2016, IEEE EMBS INT STUDEN, P1, DOI [10.1109/embsisc.2016.7508605, DOI 10.1109/EMBSISC.2016.7508605]