Offshore wind turbine monopile foundations: Design perspectives

被引:67
|
作者
Gupta, Bipin K. [1 ]
Basu, Dipanjan [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India
[2] Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON N2L 3G1, Canada
关键词
Offshore wind turbine; Monopile; Analysis; Viscoelastic soil; Nonlinear elastic soil; Design; STIFF PILES; PIERS; MODEL;
D O I
10.1016/j.oceaneng.2020.107514
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Perspectives on design of offshore wind turbine (OWT) monopile foundations are provided in this paper by logically adopting optimal analysis choices with a balance between accuracy and computational efficiency. A newly developed analysis framework is used for this purpose. The analysis framework consists of dynamic analysis with linear viscoelastic soil and static analysis with nonlinear elastic soil. The framework is used to show that the Timoshenko beam theory produces most accurate monopile response although the Euler-Bernoulli beam theory produces optimal results maintaining a balance between accuracy and computational efficiency. The rigid beam theory can be used only under very restricted soil and monopile conditions. The analysis further demonstrates that static analysis is sufficient and optimal in producing monopile-soil stiffness values that can be used for determining the natural frequency of vibration of the OWTs. Moreover, nonlinear elastic analysis is sufficiently accurate and quick to produce monopile responses that can be used in design and there is no need for elasto-plastic analysis. The aspect of cyclic degradation of soil stiffness over the design life of monopiles is not considered. Thus, an optimal pathway for monopile design is described using the newly developed analysis framework and demonstrated through a design example.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Analysis and Design of Monopile Foundations for Offshore Wind and Tidal Turbine Structures
    Nasab, Navid Majdi
    Kilby, Jeff
    Bakhtiaryfard, Leila
    WATER, 2022, 14 (21)
  • [2] Analysis and Design of Monopile Foundations for Offshore Wind-Turbine Structures
    Arshad, Muhammad
    O'Kelly, Brendan C.
    MARINE GEORESOURCES & GEOTECHNOLOGY, 2016, 34 (06) : 503 - 525
  • [3] Ship collision analysis on offshore wind turbine monopile foundations
    Bela, Andreea
    Le Sourne, Herve
    Buldgen, Loic
    Rigo, Philippe
    MARINE STRUCTURES, 2017, 51 : 220 - 241
  • [4] Performance of riprap armour at vibrating offshore wind turbine monopile foundations
    Tang, Zihao
    Melville, Bruce
    Shamseldin, Asaad Y.
    Singhal, Naresh
    Guan, Dawei
    Stolte, Andrew
    COASTAL ENGINEERING, 2023, 186
  • [5] Countermeasures for local scour at offshore wind turbine monopile foundations: A review
    Tang, Zi-hao
    Melville, Bruce
    Singhal, Naresh
    Shamseldin, Asaad
    Zheng, Jin-hai
    Guan, Da-wei
    Cheng, Liang
    WATER SCIENCE AND ENGINEERING, 2022, 15 (01): : 15 - 28
  • [6] Soil-structure reliability of offshore wind turbine monopile foundations
    Carswell, Wystan
    Arwade, Sanjay Raja
    DeGroot, Don J.
    Lackner, Matthew A.
    WIND ENERGY, 2015, 18 (03) : 483 - 498
  • [7] Experimental modelling of the effects of scour on offshore wind turbine monopile foundations
    Mayall, R. O.
    McAdam, R. A.
    Byrne, B. W.
    Burd, H. J.
    Sheil, B. B.
    Cassie, P.
    Whitehouse, R. J. S.
    PHYSICAL MODELLING IN GEOTECHNICS, VOL 1, 2018, : 725 - 730
  • [8] Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine
    Velarde, Joey
    Bachynski, Erin E.
    14TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2017, 2017, 137 : 3 - 13
  • [9] MEAN LOAD EFFECTS ON THE FATIGUE LIFE OF OFFSHORE WIND TURBINE MONOPILE FOUNDATIONS
    Blasques, J. P.
    Natarajan, A.
    COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013), 2013, : 818 - 829
  • [10] Countermeasures for local scour around offshore wind turbine monopile foundations: A review
    Zhang, Fengpeng
    Chen, Xuguang
    Yan, Jiahao
    Gao, Xingzheng
    APPLIED OCEAN RESEARCH, 2023, 141