Exact solution of the robust knapsack problem

被引:48
作者
Monaci, Michele [1 ]
Pferschy, Ulrich [2 ]
Serafini, Paolo [3 ]
机构
[1] Univ Padua, DEI, I-35131 Padua, Italy
[2] Graz Univ, Dept Stat & Operat Res, A-8010 Graz, Austria
[3] Univ Udine, DIMI, I-33100 Udine, Italy
基金
奥地利科学基金会;
关键词
Knapsack problem; Robust optimization; Dynamic programming; OPTIMIZATION; ALGORITHMS; PRICE;
D O I
10.1016/j.cor.2013.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. (c) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2625 / 2631
页数:7
相关论文
共 19 条
  • [1] Alvarez-Miranda E, 4OR IN PRESS, DOI DOI 10.1007/S10288-013-0231-6
  • [2] The price of robustness
    Bertsimas, D
    Sim, M
    [J]. OPERATIONS RESEARCH, 2004, 52 (01) : 35 - 53
  • [3] Robust discrete optimization and network flows
    Bertsimas, D
    Sim, M
    [J]. MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 49 - 71
  • [4] Theory and Applications of Robust Optimization
    Bertsimas, Dimitris
    Brown, David B.
    Caramanis, Constantine
    [J]. SIAM REVIEW, 2011, 53 (03) : 464 - 501
  • [5] Büsing C, 2011, LECT NOTES COMPUT SC, V6701, P583, DOI 10.1007/978-3-642-21527-8_65
  • [6] Recoverable robust knapsacks: the discrete scenario case
    Buesing, Christina
    Koster, Arie M. C. A.
    Kutschka, Manuel
    [J]. OPTIMIZATION LETTERS, 2011, 5 (03) : 379 - 392
  • [7] Approximation algorithms for knapsack problems with cardinality constraints
    Caprara, A
    Kellerer, H
    Pferschy, U
    Pisinger, D
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 123 (02) : 333 - 345
  • [8] Cutting plane versus compact formulations for uncertain (integer) linear programs
    Fischetti M.
    Monaci M.
    [J]. Mathematical Programming Computation, 2012, 4 (3) : 239 - 273
  • [9] Improved dynamic programming in connection with an FPTAS for the knapsack problem
    Kellerer, H
    Pferschy, U
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (01) : 5 - 11
  • [10] A new fully polynomial time approximation scheme for the knapsack problem
    Kellerer, H
    Pferschy, U
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 1999, 3 (01) : 59 - 71