CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis

被引:21
作者
Ayati, Marzieh [1 ,2 ]
Wiredja, Danica [3 ]
Schlatzer, Daniela [3 ]
Maxwell, Sean [3 ]
Li, Ming [3 ,4 ,5 ]
Koyutuerk, Mehmet [1 ,3 ,5 ]
Chance, Mark R. [3 ,5 ,6 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[2] Univ Texas Rio Grande Valley, Dept Comp Sci, Edinburg, TX USA
[3] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Nutr, Cleveland, OH 44106 USA
关键词
MUTATIONS; SITES; DATABASE; CELLS;
D O I
10.1371/journal.pcbi.1006678
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present CoPhosK to predict kinase-substrate associations for phosphopeptide substrates detected by mass spectrometry (MS). The tool utilizes a Naive Bayes framework with priors of known kinase-substrate associations (KSAs) to generate its predictions. Through the mining of MS data for the collective dynamic signatures of the kinases' substrates revealed by correlation analysis of phosphopeptide intensity data, the tool infers KSAs in the data for the considerable body of substrates lacking such annotations. We benchmarked the tool against existing approaches for predicting KSAs that rely on static information (e.g. sequences, structures and interactions) using publically available MS data, including breast, colon, and ovarian cancer models. The benchmarking reveals that co-phosphorylation analysis can significantly improve prediction performance when static information is available (about 35% of sites) while providing reliable predictions for the remainder, thus tripling the KSAs available from the experimental MS data providing to a comprehensive and reliable characterization of the landscape of kinase-substrate interactions well beyond current limitations.
引用
收藏
页数:19
相关论文
共 35 条
[31]   Comparison of co-expression measures: mutual information, correlation, and model based indices [J].
Song, Lin ;
Langfelder, Peter ;
Horvath, Steve .
BMC BIOINFORMATICS, 2012, 13
[32]   Brain Phosphoproteome Obtained by a FASP-Based Method Reveals Plasma Membrane Protein Topology [J].
Wisniewski, Jacek R. ;
Nagaraj, Nagarjuna ;
Zougman, Alexandre ;
Gnad, Florian ;
Mann, Matthias .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (06) :3280-3289
[33]   Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data [J].
Yang, Pengyi ;
Humphrey, Sean J. ;
James, David E. ;
Yang, Yee Hwa ;
Jothi, Raja .
BIOINFORMATICS, 2016, 32 (02) :252-259
[34]   Directed Partial Correlation: Inferring Large-Scale Gene Regulatory Network through Induced Topology Disruptions [J].
Yuan, Yinyin ;
Li, Chang-Tsun ;
Windram, Oliver .
PLOS ONE, 2011, 6 (04)
[35]   Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer [J].
Zhang, Hui ;
Liu, Tao ;
Zhang, Zhen ;
Payne, Samuel H. ;
Zhang, Bai ;
McDermott, Jason E. ;
Zhou, Jian-Ying ;
Petyuk, Vladislav A. ;
Chen, Li ;
Ray, Debjit ;
Sun, Shisheng ;
Yang, Feng ;
Chen, Lijun ;
Wang, Jing ;
Shah, Punit ;
Cha, Seong Won ;
Aiyetan, Paul ;
Woo, Sunghee ;
Tian, Yuan ;
Gritsenko, Marina A. ;
Clauss, Therese R. ;
Choi, Caitlin ;
Monroe, Matthew E. ;
Thomas, Stefani ;
Nie, Song ;
Wu, Chaochao ;
Moore, Ronald J. ;
Yu, Kun-Hsing ;
Tabb, David L. ;
Fenyo, David ;
Bafna, Vineet ;
Wang, Yue ;
Rodriguez, Henry ;
Boja, Emily S. ;
Hiltke, Tara ;
Rivers, Robert C. ;
Sokoll, Lori ;
Zhu, Heng ;
Shih, Ie-Ming ;
Cope, Leslie ;
Pandey, Akhilesh ;
Zhang, Bing ;
Snyder, Michael P. ;
Levine, Douglas A. ;
Smith, Richard D. ;
Chan, Daniel W. ;
Rodland, Karin D. .
CELL, 2016, 166 (03) :755-765