Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries

被引:285
作者
Liu, Jun [2 ,3 ]
Kopold, Peter [2 ]
van Aken, Peter A. [2 ]
Maier, Joachim [2 ]
Yu, Yan [1 ,2 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[2] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[3] S China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
anode materials; carbon coating; lithium-ion batteries; mesoporous silica; reed leaves; HIGH-CAPACITY; RICE HUSKS; SEMICONDUCTOR NANOWIRES; MACROPOROUS SILICON; SCALABLE SYNTHESIS; LASER-ABLATION; PERFORMANCE; SI; NANOCOMPOSITE; NANOPARTICLES;
D O I
10.1002/anie.201503150
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10C, a specific capacity of 420mAhg(-1) is achieved.
引用
收藏
页码:9632 / 9636
页数:5
相关论文
共 44 条
[1]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[2]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[3]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[4]   Diameter-controlled synthesis of single-crystal silicon nanowires [J].
Cui, Y ;
Lauhon, LJ ;
Gudiksen, MS ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2214-2216
[5]   Silica in plants: Biological, biochemical and chemical studies [J].
Currie, Heather A. ;
Perry, Carole C. .
ANNALS OF BOTANY, 2007, 100 (07) :1383-1389
[6]   Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability [J].
Du, Fei-Hu ;
Li, Bo ;
Fu, Wei ;
Xiong, Yi-Jun ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
ADVANCED MATERIALS, 2014, 26 (35) :6145-6150
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Silicon: its manifold roles in plants [J].
Epstein, E. .
ANNALS OF APPLIED BIOLOGY, 2009, 155 (02) :155-160
[9]   Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries [J].
Favors, Zachary ;
Wang, Wei ;
Bay, Hamed Hosseini ;
Mutlu, Zafer ;
Ahmed, Kazi ;
Liu, Chueh ;
Ozkan, Mihrimah ;
Ozkan, Cengiz S. .
SCIENTIFIC REPORTS, 2014, 4
[10]   Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation [J].
Geohegan, DB ;
Puretzky, AA ;
Duscher, G ;
Pennycook, SJ .
APPLIED PHYSICS LETTERS, 1998, 72 (23) :2987-2989