Equivariant cohomology of cohomogeneity-one actions: The topological case

被引:1
作者
Goertsches, Oliver [1 ]
Mare, Augustin-Liviu [2 ]
机构
[1] Philipps Univ, Fachbereich Math & Informat, Marburg, Germany
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
关键词
Compact Lie groups; Cohomogeneity one group actions on topological manifolds; Equivariant cohomology; Cohen-Macaulay rings;
D O I
10.1016/j.topol.2016.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any cohomogeneity-one continuous action of a compact connected Lie group G on a closed topological manifold the equivariant cohomology equipped with its canonical H*(BG)-module structure is Cohen-Macaulay. The proof relies on the structure theorem for these actions recently obtained by Calaz-Garcia and Zarei. We generalize in this way our previous result concerning smooth actions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 14 条
  • [1] Equivariant cohomology of cohomogeneity one actions
    Goertsches, Oliver
    Mare, Augustin-Liviu
    TOPOLOGY AND ITS APPLICATIONS, 2014, 167 : 36 - 52
  • [2] The equivariant cohomology ring of a cohomogeneity-one action
    Jeffrey D. Carlson
    Oliver Goertsches
    Chen He
    Augustin-Liviu Mare
    Geometriae Dedicata, 2019, 203 : 205 - 223
  • [3] The equivariant cohomology ring of a cohomogeneity-one action
    Carlson, Jeffrey D.
    Goertsches, Oliver
    He, Chen
    Mare, Augustin-Liviu
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 205 - 223
  • [4] TRANSITIVE ACTIONS AND EQUIVARIANT COHOMOLOGY AS AN UNSTABLE A*-ALGEBRA
    Hauschild, Volker
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 245 (01) : 141 - 150
  • [5] Equivariant intersection cohomology of the circle actions
    José Ignacio Royo Prieto
    Martintxo E. Saralegi-Aranguren
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 49 - 62
  • [6] Equivariant intersection cohomology of the circle actions
    Royo Prieto, Jose Ignacio
    Saralegi-Aranguren, Martintxo E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 49 - 62
  • [7] A classification of hyperpolar and cohomogeneity one actions
    Kollross, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 571 - 612
  • [8] Vector fields, torus actions and equivariant cohomology
    Carrell, Jim
    Kaveh, Kiumars
    Puppe, Volker
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 232 (01) : 61 - 76
  • [9] ON THE EQUIVARIANT COHOMOLOGY OF HYPERPOLAR ACTIONS ON SYMMETRIC SPACES
    Goertsches, Oliver
    Noshari, Sam Hagh Shenas
    Mare, Augustin-Liviu
    DOCUMENTA MATHEMATICA, 2019, 24 : 1657 - 1676
  • [10] The equivariant cohomology of complexity one spaces
    Holm, Tara S.
    Kessler, Liat
    ENSEIGNEMENT MATHEMATIQUE, 2019, 65 (3-4): : 457 - 485