On the sign-changing solutions for strong singular one-dimensional p-Laplacian problems with p-superlinearity

被引:1
作者
Li, Hong-Xu [1 ]
Zhang, Li-Li [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
strong singular indefinite weight; p-Laplacian; sign-changing solution; global bifurcation; existence; BOUNDARY-VALUE-PROBLEMS; MULTIPLE POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; 2ND-ORDER; EXISTENCE; BIFURCATION;
D O I
10.5486/PMD.2012.5085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the one-dimensional p-Laplacian problem [GRAPHICS] where phi(p)(s) = vertical bar s vertical bar(p-2) s, p > 1, h(t) >= 0 and 0 < integral(I) h(t)dt < infinity for any compact subinterval I subset of (0,1), and f is an element of(R, R) with f p-superlinear at infinity. By applying the global bifurcation argument and nonlinear eigenvalue theory, we establish an existence and multiplicity result of sign-changing solutions for (P). Our result generalizes and improves some recent result from the case h is an element of L-1(0,1) to a strong singular case h is an element of A sic {h is an element of L-loc(1)(0, 1) : integral(1)(0)(s(1 - s))(P-1)h(s)ds < infinity}.
引用
收藏
页码:271 / 287
页数:17
相关论文
共 23 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]   A relation between two classes of indefinite weights in singular one-dimensional p-Laplacian problems [J].
Byun, Jisoo ;
Sim, Inbo .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04) :889-894
[3]  
Garcia-Huidobro M., 2003, ADV DIFFER EQU-NY, V8, P337
[4]   Twin positive solutions for the one-dimensional p-Laplacian boundary value problems [J].
He, XM ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) :975-984
[5]   On an eigenvalue problem involving the one-dimensional p-Laplacian [J].
Huy, NB ;
Thanh, TD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) :123-131
[6]  
JAROS J, 1999, ACTA MATH U COMENIAN, V68, P117
[7]  
KAJIKIYA R., 2008, J DIFFER EQUATIONS, V244, P1995
[8]   Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight; p-sublinear at ∞ [J].
Kajikiya, Ryuji ;
Lee, Yong-Hoon ;
Sim, Inbo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1235-1249
[9]   Multiple positive solutions for the one-dimensional p-Laplacian [J].
Kong, LB ;
Wang, JY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) :1327-1333
[10]   A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order [J].
Kusano, T ;
Jaros, J ;
Yoshida, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :381-395