The vertex k-cut problem

被引:12
|
作者
Cornaz, Denis [1 ]
Furini, Fabio [1 ]
Lacroix, Mathieu [2 ]
Malaguti, Enrico [3 ]
Mahjoub, A. Ridha [1 ]
Martin, Sebastien [4 ]
机构
[1] Univ Paris 09, PSL, CNRS, LAMSADE UMR 7243, F-75775 Paris 16, France
[2] Univ Paris 13, Sorbonne Paris Cite, LIPN, CNRS,UMR 7030, Ave JB Clement, F-93430 Villetaneuse, France
[3] Univ Bologna, DEI, Viale Risorgimento 2, I-40136 Bologna, Italy
[4] Univ Lorraine, LCOMS, F-57045 Metz, France
关键词
Vertex cut; Mixed-integer programming models; Branch and Price; Exact algorithms; SEPARATOR PROBLEM; ALGORITHM; COMPLEXITY;
D O I
10.1016/j.disopt.2018.07.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given an undirected graph G = (V, E), a vertex k-cut of G is a vertex subset of V the removing of which disconnects the graph in at least k components. Given a graph G and an integer k >= 2, the vertex k-cut problem consists in finding a vertex k-cut of G of minimum cardinality. We first prove that the problem is NP-hard for any fixed k >= 3. We then present a compact formulation, and an extended formulation from which we derive a column generation and a branching scheme. Extensive computational results prove the effectiveness of the proposed methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 28
页数:21
相关论文
共 50 条
  • [21] An exact approach for the Vertex Coloring Problem
    Malaguti, Enrico
    Monaci, Michele
    Toth, Paolo
    DISCRETE OPTIMIZATION, 2011, 8 (02) : 174 - 190
  • [22] The Multi-terminal vertex separator problem: Extended formulations and Branch-and-Cut-and-Price
    Magnouche, Youcef
    Mahjoub, A. Ridha
    Martin, Sebastien
    2016 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2016, : 683 - 688
  • [23] The K-partitioning problem: Formulations and branch-and-cut
    Ales, Zacharie
    Knippel, Arnaud
    NETWORKS, 2020, 76 (03) : 323 - 349
  • [24] Distributed Vertex-Cut Partitioning
    Rahimian, Fatemeh
    Payberah, Amir H.
    Girdzijauskas, Sarunas
    Haridi, Seif
    DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS (DAIS 2014), 2014, 8460 : 186 - 200
  • [25] A 5k-vertex kernel for 3-path vertex cover
    Xiao, Mingyu
    Kou, Shaowei
    THEORETICAL COMPUTER SCIENCE, 2023, 959
  • [26] Finding a Small Vertex Cut on Distributed Networks
    Jiang, Yonggang
    Mukhopadhyay, Sagnik
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1791 - 1801
  • [27] MINIMUM VIOLATION VERTEX MAPS AND THEIR APPLICATIONS TO CUT PROBLEMS
    Kawarabayashi, Ken-ichi
    Xu, Chao
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2183 - 2207
  • [28] Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem with Symmetry
    Januschowski, Tim
    Pfetsch, Marc E.
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING FOR COMBINATORIAL OPTIMIZATION PROBLEMS, 2011, 6697 : 99 - 116
  • [29] On the complexity of the balanced vertex ordering problem
    Kara, Jan
    Kratochvil, Jan
    Wood, David R.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01) : 193 - 202
  • [30] A NEW APPROACH TO THE VERTEX COLORING PROBLEM
    Torkestani, Javad Akbari
    CYBERNETICS AND SYSTEMS, 2013, 44 (05) : 444 - 466