共 50 条
Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress
被引:98
|作者:
Singh, Dhananjaya P.
[1
]
Singh, Vivek
[1
]
Gupta, Vijai K.
[4
]
Shukla, Renu
[1
]
Prabha, Ratna
[1
]
Sarma, Birinchi K.
[2
,3
]
Patel, Jai Singh
[2
,3
]
机构:
[1] ICAR Res Complex, Natl Bur Agr Important Microorganisms, Kushmaur 275101, Maunath Bhanjan, India
[2] Banaras Hindu Univ, Inst Agr Sci, Dept Mycol & Plant Pathol, Varanasi 21005, Uttar Pradesh, India
[3] Tallinn Univ Technol, Sch Sci, Dept Chem & Biotechnol, EE-12618 Tallinn, Estonia
[4] Tallinn Univ Technol, Sch Sci, Dept Chem & Biotechnol, Akad Tee 15, EE-12618 Tallinn, Estonia
关键词:
PHENYLALANINE AMMONIA-LYASE;
OXIDATIVE STRESS;
PLANT-GROWTH;
RHIZOSPHERE MICROBIOME;
TRICHODERMA-HARZIANUM;
ASCORBATE PEROXIDASE;
SUPEROXIDE-DISMUTASE;
FUNCTIONAL-ANALYSIS;
SALT STRESS;
TOLERANCE;
D O I:
10.1038/s41598-020-61140-w
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Microbial inoculation in drought challenged rice triggered multipronged steps at enzymatic, non-enzymatic and gene expression level. These multifarious modulations in plants were related to stress tolerance mechanisms. Drought suppressed growth of rice plants but inoculation with Trichoderma, Pseudomonas and their combination minimized the impact of watering regime. Induced PAL gene expression and enzyme activity due to microbial inoculation led to increased accumulation of polyphenolics in plants. Enhanced antioxidant concentration of polyphenolics from microbe inoculated and drought challenged plants showed substantially high values of DPPH, ABTS, Fe-ion reducing power and Fe-ion chelation activity, which established the role of polyphenolic extract as free radical scavengers. Activation of superoxide dismutase that catalyzes superoxide (O-2(-)) and leads to the accumulation of H2O2 was linked with the hypersensitive cell death response in leaves. Microbial inoculation in plants enhanced activity of peroxidase, ascorbate peroxidase, glutathione peroxidase and glutathione reductase enzymes. This has further contributed in reducing ROS burden in plants. Genes of key metabolic pathways including phenylpropanoid (PAL), superoxide dismutation (SODs), H2O2 peroxidation (APX, PO) and oxidative defense response (CAT) were over-expressed due to microbial inoculation. Enhanced expression of OSPiP linked to less-water permeability, drought-adaptation gene DHN and dehydration related stress inducible DREB gene in rice inoculated with microbial inoculants after drought challenge was also reported. The impact of Pseudomonas on gene expression was consistently remained the most prominent. These findings suggested that microbial inoculation directly caused over-expression of genes linked with defense processes in plants challenged with drought stress. Enhanced enzymatic and non-enzymatic antioxidant reactions that helped in minimizing antioxidative load, were the repercussions of enhanced gene expression in microbe inoculated plants. These mechanisms contributed strongly towards stress mitigation. The study demonstrated that microbial inoculants were successful in improving intrinsic biochemical and molecular capabilities of rice plants under stress. Results encouraged us to advocate that the practice of growing plants with microbial inoculants may find strategic place in raising crops under abiotic stressed environments.
引用
收藏
页数:17
相关论文