On Schatten p-norms of commutators

被引:12
作者
Cheng, Che-Man [1 ]
Lei, Chunyu [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Schatten p-norm; Commutator; Norm inequality; CONJECTURE;
D O I
10.1016/j.laa.2015.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any odd integer d >= 3, we determine the sharpest constant C-p,C-g,C-r such that parallel to XY - YX parallel to(p) <= ;C-p,C-q,C-r parallel to X parallel to(q)parallel to Y parallel to(r) for all X, Y is an element of M-d, where M-d denotes the set of all d x d complex matrices, parallel to center dot parallel to(p), 1 <= p <= infinity, denotes the Schatten p-norm on M-d, and 1 <= p, q, r <= infinity satisfy 1/p >1/q + 1/r. This is a continuation of the study of the problem considered in Wenzel and Audenaert (2010) [8]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 434
页数:26
相关论文
共 8 条
[1]   Variance bounds, with an application to norm bounds for commutators [J].
Audenaert, Koenraad M. R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (05) :1126-1143
[2]   The Frobenius norm and the commutator [J].
Boettcher, Albrecht ;
Wenzel, David .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) :1864-1885
[3]   How big can the commutator of two matrices be and how big is it typically? [J].
Böttcher, A ;
Wenzel, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 :216-228
[4]  
Cheng C.-M., 2015, OPER MATRIC IN PRESS
[5]   Normal Scalar Curvature Conjecture and its applications [J].
Lu, Zhiqin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (05) :1284-1308
[6]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[7]  
Vong SW, 2008, OPER MATRICES, V2, P435
[8]   Impressions of convexity An illustration for commutator bounds [J].
Wenzel, David ;
Audenaert, Koenraad M. R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) :1726-1759