Regulation of Drosophila Metamorphosis by Xenobiotic Response Regulators

被引:56
作者
Deng, Huai [1 ]
Kerppola, Tom K. [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
OXIDATIVE STRESS; TRANSCRIPTION FACTOR; ANTIOXIDANT RESPONSE; MOLECULAR-MECHANISMS; EMBRYONIC LETHALITY; PROTHORACIC GLAND; GENE-EXPRESSION; NRF2; KEAP1; ECDYSONE;
D O I
10.1371/journal.pgen.1003263
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mammalian Nrf2-Keap1 and the homologous Drosophila CncC-dKeap1 protein complexes regulate both transcriptional responses to xenobiotic compounds as well as native cellular and developmental processes. The relationships between the functions of these proteins in xenobiotic responses and in development were unknown. We investigated the genes regulated by CncC and dKeap1 during development and the signal transduction pathways that modulate their functions. CncC and dKeap1 were enriched within the nuclei in many tissues, in contrast to the reported cytoplasmic localization of Keap1 and Nrf2 in cultured mammalian cells. CncC and dKeap1 occupied ecdysone-regulated early puffs on polytene chromosomes. Depletion of either CncC or dKeap1 in salivary glands selectively reduced early puff gene transcription. CncC and dKeap1 depletion in the prothoracic gland as well as cncC(K6/K6) and dKeap1(EY5/EY5) loss of function mutations in embryos reduced ecdysone-biosynthetic gene transcription. In contrast, dKeap1 depletion and the dKeap1(EY5/EY5) loss of function mutation enhanced xenobiotic response gene transcription in larvae and embryos, respectively. Depletion of CncC or dKeap1 in the prothoracic gland delayed pupation by decreasing larval ecdysteroid levels. CncC depletion suppressed the premature pupation and developmental arrest caused by constitutive Ras signaling in the prothoracic gland; conversely, constitutive Ras signaling altered the loci occupied by CncC on polytene chromosomes and activated transcription of genes at these loci. The effects of CncC and dKeap1 on both ecdysone-biosynthetic and ecdysone-regulated gene transcription, and the roles of CncC in Ras signaling in the prothoracic gland, establish the functions of these proteins in the neuroendocrine axis that coordinates insect metamorphosis.
引用
收藏
页数:13
相关论文
共 44 条
[2]   The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells [J].
Bobilev, Irene ;
Novik, Victoria ;
Levi, Itai ;
Shpilberg, Ofer ;
Levy, Joseph ;
Sharoni, Yoav ;
Studzinski, George P. ;
Danilenko, Michael .
CANCER BIOLOGY & THERAPY, 2011, 11 (03) :317-329
[3]  
Busson Denise, 2007, V397, P161
[4]   Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders [J].
Calabrese, Vittorio ;
Cornelius, Carolin ;
Dinkova-Kostova, Albena T. ;
Calabrese, Edward J. ;
Mattson, Mark P. .
ANTIOXIDANTS & REDOX SIGNALING, 2010, 13 (11) :1763-1811
[5]   Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release [J].
Caldwell, PE ;
Walkiewicz, M ;
Stern, M .
CURRENT BIOLOGY, 2005, 15 (20) :1785-1795
[6]   Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice [J].
Chan, JY ;
Kwong, M ;
Lu, RH ;
Chang, J ;
Wang, B ;
Yen, TSB ;
Kan, YW .
EMBO JOURNAL, 1998, 17 (06) :1779-1787
[7]   NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development [J].
Chan, KM ;
Lu, RH ;
Chang, JC ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13943-13948
[8]   Nrf1 is critical for redox balance and survival of liver cells during development [J].
Chen, LY ;
Kwong, M ;
Lu, RH ;
Ginzinger, D ;
Lee, C ;
Leung, L ;
Chan, JY .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (13) :4673-4686
[9]   EcR isoforms in Drosophila:: testing tissue-specific requirements by targeted blockade and rescue [J].
Cherbas, L ;
Hu, X ;
Zhimulev, I ;
Belyaeva, E ;
Cherbas, P .
DEVELOPMENT, 2003, 130 (02) :271-284
[10]   Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha [J].
Chorley, Brian N. ;
Campbell, Michelle R. ;
Wang, Xuting ;
Karaca, Mehmet ;
Sambandan, Deepa ;
Bangura, Fatu ;
Xue, Peng ;
Pi, Jingbo ;
Kleeberger, Steven R. ;
Bell, Douglas A. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (15) :7416-7429