We prove that for any epsilon > 0 there exists an integer n(epsilon) such that the pathwidth of every cubic (or 3-regular) graph on n > n(epsilon) vertices is at most (1/6 + epsilon)n. Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three. (c) 2005 Elsevier B.V. All rights reserved.
机构:
Indian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, India
Krishna, D. Sai
Reddy, T. V. Thirumala
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, India
Reddy, T. V. Thirumala
Shashank, B. Sai
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Comp Sci & Engn, Gauhati 781039, IndiaIndian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, India
Shashank, B. Sai
Rangan, C. Pandu
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol, Dept Comp Sci & Engn, Chennai 600036, Tamil Nadu, India