Accelerating the Sinkhorn Algorithm for Sparse Multi-Marginal Optimal Transport via Fast Fourier Transforms

被引:7
作者
Ba, Fatima Antarou [1 ]
Quellmalz, Michael [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
multi-marginal optimal transport; Sinkhorn algorithm; fast Fourier transform; image processing; optimal transport; Wasserstein barycenter; SUMMATION;
D O I
10.3390/a15090311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the numerical solution of the discrete multi-marginal optimal transport (MOT) by means of the Sinkhorn algorithm. In general, the Sinkhorn algorithm suffers from the curse of dimensionality with respect to the number of marginals. If the MOT cost function decouples according to a tree or circle, its complexity is linear in the number of marginal measures. In this case, we speed up the convolution with the radial kernel required in the Sinkhorn algorithm via non-uniform fast Fourier methods. Each step of the proposed accelerated Sinkhorn algorithm with a tree-structured cost function has a complexity of O (KN) instead of the classical O (KN2) for straightforward matrix- vector operations, where K is the number of marginals and each marginal measure is supported on, at most, N points. In the case of a circle-structured cost function, the complexity improves from O (KN3) to O (KN2). This is confirmed through numerical experiments.
引用
收藏
页数:19
相关论文
共 58 条
  • [1] BARYCENTERS IN THE WASSERSTEIN SPACE
    Agueh, Martial
    Carlier, Guillaume
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 904 - 924
  • [2] Alaya M.Z., 2019, P 33 INT C NEURAL IN, DOI DOI 10.5555/3454287.3455379
  • [3] Alfke D., 2018, Frontiers in Applied Mathematics and Statistics, V4, P61
  • [4] Polynomial-time algorithms for multimarginal optimal transport problems with structure
    Altschuler, Jason M.
    Boix-Adsera, Enric
    [J]. MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1107 - 1178
  • [5] Backpropagation Imaging in Nonlinear Harmonic Holography in the Presence of Measurement and Medium Noises
    Ammari, Habib
    Garnier, Josselin
    Millien, Pierre
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (01): : 239 - 276
  • [6] [Anonymous], 1989, J. Amer. Math. Soc., DOI [10.1090/S0894-0347-1989-0969419-8, DOI 10.1090/S0894-0347-1989-0969419-8]
  • [7] Baldwin D.A, 2016, POWER INT RELATIONS, DOI 10.23943/princeton/9780691172767.001.0001
  • [8] Bassetti F, 2019, Arxiv, DOI arXiv:1804.00445
  • [9] Beier F., 2021, ARXIV
  • [10] A general duality theorem for the Monge-Kantorovich transport problem
    Beiglboeck, Mathias
    Leonard, Christian
    Schachermayer, Walter
    [J]. STUDIA MATHEMATICA, 2012, 209 (02) : 151 - 167