Fractional semilinear differential inclusions

被引:24
作者
Ouahab, Abdelghani [1 ]
机构
[1] Sidi Bel Abbes Univ, Math Lab, Sidi Bel Abbes 22000, Algeria
关键词
Fractional differential inclusions; Fractional derivative; Fractional integral; Fixed point; Compactness; Absolute retract; EXISTENCE; OPERATORS; CALCULUS;
D O I
10.1016/j.camwa.2012.03.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present a version of Filippov's Theorem for fractional semilinear differential inclusions of the form, {((c)D(alpha)y - Ay)(t) is an element of F(t, y(t)), a.e. t is an element of [0, b], y(0) = y(0) is an element of X, where D-c(alpha) is the Caputo fractional derivative and F is a set-valued map. After several existence results, the compactness of solutions sets is also investigated. Some results from topological fixed point theory together with notions of measure of noncompactness are used. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3235 / 3252
页数:18
相关论文
共 48 条
[1]   Existence of solutions for a class of nonlinear Volterra singular integral equations [J].
Aghajani, Asadollah ;
Banas, Jozef ;
Jalilian, Yaghoub .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1215-1227
[2]  
Akhmerov R.R., 1992, Oper. Theory Adv. Appl, V55
[3]  
[Anonymous], 1999, SCI COMPUTING CHEM E
[4]  
[Anonymous], 2002, Appl. Anal. Vol.I
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
[Anonymous], 2006, Journal of the Electrochemical Society
[8]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[9]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[10]  
Benchohra M., 2008, Fractional Calculus and Applied Analysis, V11, P35