Effective mass of electron in monolayer graphene: Electron-phonon interaction

被引:63
作者
Tiras, E. [1 ]
Ardali, S. [1 ]
Tiras, T. [1 ]
Arslan, E. [2 ,3 ]
Cakmakyapan, S. [2 ,3 ]
Kazar, O. [2 ,3 ]
Hassan, J. [4 ,5 ,6 ]
Janzen, E. [4 ,5 ,6 ]
Ozbay, E. [2 ,3 ]
机构
[1] Anadolu Univ, Fac Sci, Dept Phys, TR-26470 Eskisehir, Turkey
[2] Bilkent Univ, Dept Phys, Nanotechnol Res Ctr, TR-06800 Ankara, Turkey
[3] Bilkent Univ, Dept Elect & Elect Engn, Nanotechnol Res Ctr, TR-06800 Ankara, Turkey
[4] Linkoping Univ Technol, Dept Phys, S-58183 Linkoping, Sweden
[5] Linkoping Univ Technol, Dept Chem, S-58183 Linkoping, Sweden
[6] Linkoping Univ Technol, Dept Biol, S-58183 Linkoping, Sweden
关键词
INPLANE EFFECTIVE-MASS; QUANTUM; DEPENDENCE; MOBILITY; GAS;
D O I
10.1063/1.4789385
中图分类号
O59 [应用物理学];
学科分类号
摘要
Shubnikov-de Haas (SdH) and Hall effect measurements performed in a temperature range between 1.8 and 275 K, at an electric field up to 35 kV m(-1) and magnetic fields up to 11 T, have been used to investigate the electronic transport properties of monolayer graphene on SiC substrate. The number of layers was determined by the use of the Raman spectroscopy. The carrier density and in-plane effective mass of electrons have been obtained from the periods and temperature dependencies of the amplitude of the SdH oscillations, respectively. The effective mass is in good agreement with the current results in the literature. The two-dimensional (2D) electron energy relaxations in monolayer graphene were also investigated experimentally. The electron temperature (T-e) of hot electrons was obtained from the lattice temperature (T-L) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss indicate that the energy relaxation of electrons is due to acoustic phonon emission via mixed unscreened piezoelectric interaction and deformation-potential scattering. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789385]
引用
收藏
页数:7
相关论文
共 33 条
[1]   Energy relaxation for hot Dirac fermions in graphene and breakdown of the quantum Hall effect [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 85 (11)
[2]   Warm-electron power loss in GaAs/Ga1-xAlxAs multiple quantum wells: Well-width dependence [J].
Balkan, N ;
Celik, H ;
Vickers, AJ ;
Cankurtaran, M .
PHYSICAL REVIEW B, 1995, 52 (24) :17210-17222
[3]   LOW-TEMPERATURE NON-OHMIC GALVANOMAGNETIC EFFECTS IN DEGENERATE N-TYPE INAS [J].
BAUER, G ;
KAHLERT, H .
PHYSICAL REVIEW B, 1972, 5 (02) :566-&
[4]   Hot electron energy relaxation in a semiconducting armchair graphene nanoribbon [J].
Bhargavi, K. S. ;
Kubakaddi, S. S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (7-8) :1766-1769
[5]   First- and second-order Raman scattering from semi-insulating 4H-SiC [J].
Burton, JC ;
Sun, L ;
Long, FH ;
Feng, ZC ;
Ferguson, IT .
PHYSICAL REVIEW B, 1999, 59 (11) :7282-7284
[6]   Well-width dependence of the in-plane effective mass and quantum lifetime of electrons in GaAs/Ga1-xAlxAs multiple quantum wells [J].
Celik, H ;
Cankurtaran, M ;
Bayrakli, A ;
Tiras, E ;
Balkan, N .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (04) :389-395
[7]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[8]   Measurement of ultrafast carrier dynamics in epitaxial graphene [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[9]   Epitaxial graphene electronic structure and transport [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
Sprinkle, Mike ;
Hu, Yike ;
Ruan, Ming ;
Stroscio, Joseph A. ;
First, Phillip N. ;
Haddon, Robert ;
Piot, Benjamin ;
Faugeras, Clement ;
Potemski, Marek ;
Moon, Jeong-Sun .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (37)
[10]   High-field transport properties of graphene [J].
Dong, H. M. ;
Xu, W. ;
Peeters, F. M. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)