Observing the evolution of graphene layers at high current density

被引:19
作者
Huang, Chun-Wei [1 ]
Chen, Jui-Yuan [1 ]
Chiu, Chung-Hua [1 ]
Hsin, Cheng-Lun [2 ]
Tseng, Tseung-Yuen [3 ,4 ]
Wu, Wen-Wei [1 ]
机构
[1] Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchiu 30010, Taiwan
[2] Cent Univ, Dept Elect Engn, Taoyuan 32001, Taiwan
[3] Chiao Tung Univ, Dept Elect Engn, 1001 Univ Rd, Hsinchiu 30010, Taiwan
[4] Chiao Tung Univ, Inst Elect, 1001 Univ Rd, Hsinchiu 30010, Taiwan
关键词
graphene; breakdown; high current density; in-situ transmission electron microscope (TEM); Ostwald ripening; BEHAVIORS; TRANSFORMATION; SUBLIMATION;
D O I
10.1007/s12274-016-1237-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene has demonstrated its potential in several practical applications owing to its remarkable electronic and physical properties. In this study, we successfully fabricated a suspended graphene device with a width down to 20 nm. The morphological evolution of graphene under various electric field effects was systematically examined using an in-situ transmission electron microscope (TEM). The hourglass-shaped graphene sample instantly broke apart at 7.5 mA, indicating an impressive breakdown current density. The current-carrying capacity was calculated to be similar to 1.6 x 10(9) A center dot cm(-2), which is several orders higher than that of copper. The current-carrying capacity depended on the resistivity of graphene. In addition, atomic volume changes occurred in the multilayer graphene samples due to surface diffusion and Ostwald ripening (OR), indicating that the breakdown mechanism is well approximated by the electric field. This study not only provides a theory to explain the breakdown behavior but also presents the effects on materials contacted with a graphene layer used as the transmission path.
引用
收藏
页码:3663 / 3670
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 1897, Z. f.ur. Physikalische Chem. Bd, DOI DOI 10.1515/ZPCH-1897-2233
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[4]   Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing [J].
Barreiro, A. ;
Boerrnert, F. ;
Ruemmeli, M. H. ;
Buechner, B. ;
Vandersypen, L. M. K. .
NANO LETTERS, 2012, 12 (04) :1873-1878
[5]   Lattice Expansion in Seamless Bilayer Graphene Constrictions at High Bias [J].
Boerrnert, Felix ;
Barreiro, Amelia ;
Wolf, Daniel ;
Katsnelson, Mikhail I. ;
Buechner, Bernd ;
Vandersypen, Lieven M. K. ;
Ruemmeli, Mark H. .
NANO LETTERS, 2012, 12 (09) :4455-4459
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Switching Kinetic of VCM-Based Memristor: Evolution and Positioning of Nanofilament [J].
Chen, Jui-Yuan ;
Huang, Chun-Wei ;
Chiu, Chung-Hua ;
Huang, Yu-Ting ;
Wu, Wen-Wei .
ADVANCED MATERIALS, 2015, 27 (34) :5028-+
[8]   Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories [J].
Chen, Jui-Yuan ;
Hsin, Cheng-Lun ;
Huang, Chun-Wei ;
Chiu, Chung-Hua ;
Huang, Yu-Ting ;
Lin, Su-Jien ;
Wu, Wen-Wei ;
Chen, Lih-Juann .
NANO LETTERS, 2013, 13 (08) :3671-3677
[9]   Observation of atomic diffusion at twin-modified grain boundaries in copper [J].
Chen, Kuan-Chia ;
Wu, Wen-Wei ;
Liao, Chien-Neng ;
Chen, Lih-Juann ;
Tu, K. N. .
SCIENCE, 2008, 321 (5892) :1066-1069
[10]   Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy [J].
Chen, Kuan-Chia ;
Liao, Chien-Neng ;
Wu, Wen-Wei ;
Chen, Lih-Juann .
APPLIED PHYSICS LETTERS, 2007, 90 (20)