Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography

被引:123
|
作者
Fercher, AF
Hitzenberger, CK
Sticker, M
Zawadzki, R
Karamata, B
Lasser, T
机构
[1] Univ Vienna, Inst Med Phys, A-1090 Vienna, Austria
[2] Nicholas Copernicus Univ, Dept Phys, PL-87100 Torun, Poland
[3] Ecole Polytech Fed Lausanne, Inst Opt Appl, CH-1015 Lausanne, Switzerland
来源
OPTICS EXPRESS | 2001年 / 9卷 / 12期
关键词
D O I
10.1364/OE.9.000610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample by arranging a dispersive material in the reference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented. (C) 2001 Optical Society of America.
引用
收藏
页码:610 / 615
页数:6
相关论文
共 50 条
  • [31] Estimation and compensation of dispersion for a high-resolution optical coherence tomography system
    Singh, Kanwarpal
    Sharma, Gargi
    Tearney, Guillermo J.
    JOURNAL OF OPTICS, 2018, 20 (02)
  • [32] Practical approach for dispersion compensation in spectral-domain optical coherence tomography
    Ma, Zhenhe
    He, Zhonghai
    Wang, Shuang
    Wang, Yi
    Li, Mengchao
    Wang, Qiaoyun
    Lv, Jiangtao
    Wang, Fengwen
    OPTICAL ENGINEERING, 2012, 51 (06)
  • [33] Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry
    Mcalinden, Colm
    Wang, Qinmei
    Gao, Rongrong
    Zhao, Weiqi
    Yu, Ayong
    Li, Yu
    Guo, Yan
    Huang, Jinhai
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 173 : 64 - 69
  • [34] Rotational Distortion and Compensation in Optical Coherence Tomography
    Ma, Guangying
    Son, Taeyoon
    Adejumo, Tobiloba
    Yao, Xincheng
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXVII, 2023, 12367
  • [35] Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation
    Woong-Joo Whang
    Young-Sik Yoo
    Min-Ji Kang
    Choun-Ki Joo
    Scientific Reports, 8
  • [36] Attenuation compensation for optical coherence tomography imaging
    Chang, Shoude
    Flueraru, Costel
    Mao, Youxin
    Sherif, Sherif
    OPTICS COMMUNICATIONS, 2009, 282 (23) : 4503 - 4507
  • [37] Agreement of predicted intraocular lens power using swept-source optical coherence tomography and partial coherence interferometry
    Tana-Sanz, Pedro
    Rodriguez-Carrillo, Maria Dolores
    Ruiz-Santos, Maria
    Montes-Mico, Robert
    Ruiz-Mesa, Ramon
    Tana-Rivero, Pedro
    EXPERT REVIEW OF MEDICAL DEVICES, 2021, 18 (12) : 1219 - 1234
  • [38] Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation
    Whang, Woong-Joo
    Yoo, Young-Sik
    Kang, Min-Ji
    Joo, Choun-Ki
    SCIENTIFIC REPORTS, 2018, 8
  • [39] Dispersion compensation in optical coherence tomography with a prism in a rapid-scanning optical delay line
    Tsai, MT
    Hsu, IJ
    Chih-Wei-Lu
    Wang, YM
    Sun, CW
    Kiang, YW
    Yang, CC
    OPTICAL AND QUANTUM ELECTRONICS, 2005, 37 (13-15) : 1199 - 1212
  • [40] Dispersion Compensation in Optical Coherence Tomography with a Prism in a Rapid-Scanning Optical Delay Line
    Meng-Tsan Tsai
    I-Jen Hsu
    Chih-Wei Lu
    Yih-Ming Wang
    Chia-Wei Sun
    Yean-Woei Kiang
    C. C. Yang
    Optical and Quantum Electronics, 2005, 37 : 1199 - 1212