Leveraging impurities in recycled lead anodes for sodium-ion batteries

被引:9
|
作者
Eaves-Rathert, Janna [1 ]
Moyer-Vanderburgh, Kathleen [1 ,2 ]
Wolfe, Kody [2 ]
Zohair, Murtaza [2 ,3 ]
Pint, Cary L. [1 ,3 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
Sodium -ion battery; Alloy; Anode; Recycling; Energy storage; Grid storage; LI-ION; TIN ANODES; LITHIUM; NANOCOMPOSITE; PERFORMANCE; ALLOYS; OXIDE; SN; SB; ELECTRODES;
D O I
10.1016/j.ensm.2022.08.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, the supply chain shock due to the rapid rise of the lithium-ion battery has made alternative chemistries, such as sodium-ion batteries, appealing for low-cost and large-scale energy storage. Meanwhile, the falling popularity of lead acid batteries has potential consequences for the price of scrap lead and its penetration into waste streams. In this work, we upcycle lead alloys from a used lead acid battery into a next-generation sodium-ion system for ultra-low-cost rechargeable batteries. Through evaluation of sodium storage capacity and rate capability, we study the rich interplay of Pb-Sb-Sn microstructure and properties which can be controlled through simple heat treatment of unrefined powders to reach a maximum specific capacity of 522 mAh.g-1. When cycled in the presence of glyme-based electrolytes, the ternary alloys nanostructure to facilitate an optimal balance of power and cycle life. These findings that demonstrate how defects can be leveraged to improve performance bring exciting implications for reducing cost and mitigating volume expansion in other high-value commodities, like tin or silicon.
引用
收藏
页码:552 / 558
页数:7
相关论文
共 50 条
  • [31] Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode
    Cheng Zhenjie
    Mao Yayun
    Dong Qingyu
    Jin Feng
    Shen Yanbin
    Chen Liwei
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (08) : 868 - 875
  • [32] Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin
    Meng, Qingwei
    Chen, Binyi
    Jian, Wenbin
    Zhang, Xiaoshan
    Sun, Shirong
    Wang, Tiejun
    Zhang, Wenli
    JOURNAL OF POWER SOURCES, 2023, 581
  • [33] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37
  • [34] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72
  • [35] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [36] Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries
    Qi, Shihan
    Xu, Baolin
    Tiong, Vincent Tiing
    Hu, Jin
    Ma, Jianmin
    CHEMICAL ENGINEERING JOURNAL, 2020, 379 (379)
  • [37] Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries
    Markus, Isaac M.
    Engelke, Simon
    Shirpour, Mona
    Asta, Mark
    Doeff, Marca
    CHEMISTRY OF MATERIALS, 2016, 28 (12) : 4284 - 4291
  • [38] Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon
    Sayed, Sayed Youssef
    Kalisvaart, W. Peter
    Luber, Erik J.
    Olsen, Brian C.
    Buriak, Jillian M.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 9950 - 9962
  • [39] Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries
    Wang, Jiarui
    Xi, Lei
    Peng, Chenxi
    Song, Xin
    Wan, Xuanhong
    Sun, Luyi
    Liu, Meinan
    Liu, Jun
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (08)
  • [40] Exploring the application of carbon xerogels as anodes for sodium-ion batteries
    Cuesta, Nuria
    Camean, Ignacio
    Arenillas, Ana
    Garcia, Ana B.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 308