Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces

被引:5
|
作者
Nursultanov, Erlan [1 ,2 ]
Tikhonov, Sergey [3 ,4 ,5 ]
机构
[1] Gumilyov Eurasian Natl Univ, Kazakh Branch, Lomonosov Moscow State Univ, Munatpasova 7, Astana 010010, Kazakhstan
[2] Inst Math & Math Modelling, Alma Ata 050010, Kazakhstan
[3] Ctr Recerca Matemat, Campus Bellaterra,Edif C, Bellaterra 08193, Barcelona, Spain
[4] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[5] Univ Autonoma Barcelona, Barcelona, Spain
关键词
Fourier transforms; Weights; Lebesgue and Lorentz spaces; Integral operators; Rearrangements; Hardy inequalities; Hormander-type conditions; NORM INEQUALITIES; TRANSFORM; OPERATORS; REARRANGEMENT; THEOREMS;
D O I
10.1007/s00041-020-09764-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy's inequalities. Second, we present Hormander-type conditions on weights so that Fourier-type integral operators are bounded in Lebesgue and Lorentz spaces. Both restricted weak- and strong-type results are obtained. In the case of regular weights necessary and sufficient conditions are given.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] ADMISSIBLE FUNCTION SPACES FOR WEIGHTED SOBOLEV INEQUALITIES
    Anoop, T., V
    Biswas, Nirjan
    Das, Ujjal
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (09) : 3241 - 3279
  • [42] Weighted inequalitiesfor Schrodinger type singular integralson variable Lebesgue spaces
    Cabral, Adrian
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (02)
  • [43] On Hausdorff-Young inequalities in generalized Lebesgue spaces
    Ismailov, Migdad
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1757 - 1767
  • [44] Hardy-Leray inequalities in variable Lebesgue spaces ☆
    Cruz-Uribe, David
    Suragan, Durvudkhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [45] Marcinkiewicz-Zygmund inequalities in variable Lebesgue spaces
    Bonich, Marcos
    Carando, Daniel
    Mazzitelli, Martin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)
  • [46] SOME MODULAR INEQUALITIES IN LEBESGUE SPACES WITH A VARIABLE EXPONENT
    Izuki, Mitsuo
    Noi, Takahiro
    Sawano, Yoshihiro
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 343 - 349
  • [47] THE STECHKIN INEQUALITY FOR FOURIER MULTIPLIERS ON VARIABLE LEBESGUE SPACES
    Karlovich, Alexei Yu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1473 - 1481
  • [48] Moser-type inequalities in Lorentz spaces
    Alvino, A
    Ferone, V
    Trombetti, G
    POTENTIAL ANALYSIS, 1996, 5 (03) : 273 - 299
  • [49] Sawyer-type inequalities for Lorentz spaces
    Carlos Pérez
    Eduard Roure-Perdices
    Mathematische Annalen, 2022, 383 : 493 - 528
  • [50] BURKHOLDER'S INEQUALITIES IN NONCOMMUTATIVE LORENTZ SPACES
    Yong Jiao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) : 2431 - 2441