Microengineering in cardiovascular research: new developments and translational applications

被引:7
作者
Chan, Juliana M. [1 ,2 ]
Wong, Keith H. K. [3 ,4 ]
Richards, Arthur Mark [5 ]
Drum, Chester L. [5 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Lee Kong Chian Sch Med, Singapore 639798, Singapore
[3] Harvard Univ, Sch Med, Ctr Engn Med, Cambridge, MA 02138 USA
[4] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Dept Surg, Cambridge, MA 02138 USA
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Cardiovasc Res Inst, Singapore 117595, Singapore
基金
英国医学研究理事会;
关键词
Microengineering; vascular models; point-of-care diagnostics; microfluidics; three-dimensional cell culture; MYOCARDIAL-INFARCTION; DRUG DEVELOPMENT; HEART-FAILURE; ANIMAL-MODELS; SHEAR-STRESS; BLOOD; PAPER; DISEASE; OXYGEN; MICROFLUIDICS;
D O I
10.1093/cvr/cvv049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Microfluidic, cellular co-cultures that approximate macro-scale biology are important tools for refining the in vitro study of organ-level function and disease. In recent years, advances in technical fabrication and biological integration have provided new insights into biological phenomena, improved diagnostic measurements, and made major steps towards de novo tissue creation. Here we review applications of these technologies specific to the cardiovascular field, emphasizing three general categories of use: reductionist vascular models, tissue-engineered vascular models, and point-of-care diagnostics. With continued progress in the ability to purposefully control microscale environments, the detailed study of both primary and cultured cells may find new relevance in the general cardiovascular research community.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 64 条
[41]   Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels [J].
Price, Gavrielle M. ;
Wong, Keith H. K. ;
Truslow, James G. ;
Leung, Alexander D. ;
Acharya, Chitrangada ;
Tien, Joe .
BIOMATERIALS, 2010, 31 (24) :6182-6189
[42]   Biological implications of polydimethylsiloxane-based microfluidic cell culture [J].
Regehr, Keil J. ;
Domenech, Maribella ;
Koepsel, Justin T. ;
Carver, Kristopher C. ;
Ellison-Zelski, Stephanie J. ;
Murphy, William L. ;
Schuler, Linda A. ;
Alarid, Elaine T. ;
Beebe, David J. .
LAB ON A CHIP, 2009, 9 (15) :2132-2139
[43]   An enzymatic immunoassay microfluidics integrated with membrane valves for microsphere retention and reagent mixing [J].
Ren, Li ;
Wang, Jian-Chun ;
Liu, Wenming ;
Tu, Qin ;
Liu, Rui ;
Wang, Xueqin ;
Xu, Juan ;
Wang, Yaolei ;
Zhang, Yanrong ;
Li, Li ;
Wang, Jinyi .
BIOSENSORS & BIOELECTRONICS, 2012, 35 (01) :147-154
[44]   Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry [J].
Rosenbluth, Michael J. ;
Lam, Wilbur A. ;
Fletcher, Daniel A. .
LAB ON A CHIP, 2008, 8 (07) :1062-1070
[45]   Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis [J].
Russell, James C. ;
Proctor, Spencer D. .
CARDIOVASCULAR PATHOLOGY, 2006, 15 (06) :318-330
[46]  
Sianos G, 2010, J INVASIVE CARDIOL, V22, p6B
[47]   Fluid forces control endothelial sprouting [J].
Song, Jonathan W. ;
Munn, Lance L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (37) :15342-15347
[48]  
STRONY J, 1993, AM J PHYSIOL, V265, pH1787
[49]  
Thygesen K, 2012, J AM COLL CARDIOL, V60, P1581, DOI [10.1016/j.clinbiochem.2012.10.036, 10.1016/j.jacc.2012.08.001, 10.1016/j.gheart.2012.08.001, 10.1161/CIR.0b013e31826e1058, 10.1093/eurheartj/ehs184, 10.1016/j.gheart.2018.08.004, 10.5603/KP.2018.0203]
[50]   PDMS absorption of small molecules and consequences in microfluidic applications [J].
Toepke, Michael W. ;
Beebe, David J. .
LAB ON A CHIP, 2006, 6 (12) :1484-1486