Positive Solutions for Resonant (p,q)-equations with convection

被引:24
作者
Liu, Zhenhai [1 ,2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Guangxi Univ Nationalities, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Guangxi, Peoples R China
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Singular term; resonance; nonlinear regularity; Leray-Schauder alternative principle; minimal solution; iterative asymptotic process; DOUBLE-PHASE PROBLEMS; NEUMANN PROBLEMS;
D O I
10.1515/anona-2020-0108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear parametric Dirichlet problem driven by the (p,q)-Laplacian (double phase problem) with a reaction exhibiting the competing effects of three different terms. Aparametric one consisting of the sum of a singular term and of a drift term (convection) and of a nonparametric perturbation which is resonant. Using the frozen variable method and eventually a fixed point argument based on an iterative asymptotic process, we show that the problem has a positive smooth solution.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 31 条
[21]   DOUBLE-PHASE PROBLEMS AND A DISCONTINUITY PROPERTY OF THE SPECTRUM [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) :2899-2910
[22]   Noncoercive resonant (p, 2)-equations with concave terms [J].
Papageorgiou, Nikolaos S. ;
Zhang, Chao .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :228-249
[23]   Parametric nonlinear singular Dirichlet problems [J].
Papageorgiou, Nikolaos S. ;
Vetro, Calogero ;
Vetro, Francesca .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 :239-254
[24]   Double-phase problems with reaction of arbitrary growth [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04)
[25]   A BIFURCATION - TYPE THEOREM FOR SINGULAR NONLINEAR ELLIPTIC EQUATIONS [J].
Papageorgiou, Nikolaos S. ;
Smyrlis, George .
METHODS AND APPLICATIONS OF ANALYSIS, 2015, 22 (02) :147-170
[26]  
Papageorgiou NS, 2019, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-030-03430-6
[27]   Regularity for minimizers for functionals of double phase with variable exponents [J].
Ragusa, Maria Alessandra ;
Tachikawa, Atsushi .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :710-728
[28]   Nontrivial Solutions for Schrodinger Equation with Local Super-Quadratic Conditions [J].
Tang, Xianhua ;
Lin, Xiaoyan ;
Yu, Jianshe .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) :369-383
[29]   Semilinear Robin problems driven by the Laplacian plus an indefinite potential [J].
Vetro, C. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (04) :573-587
[30]   Pairs of nontrivial smooth solutions for nonlinear Neumann problems [J].
Vetro, Calogero .
APPLIED MATHEMATICS LETTERS, 2020, 103