Poincare and the Three-Body Problem

被引:0
作者
Chenciner, Alain [1 ,2 ]
机构
[1] ASD, IMCCE UMR 8028, Observ Paris, 77 Ave Denfert Rochereau, F-75014 Paris, France
[2] Univ Paris 07, Dept Math, F-75221 Paris 05, France
来源
HENRI POINCARE, 1912-2012 | 2015年 / 67卷
关键词
STABILITY; PROOF; THEOREM; DESTRUCTION; EXISTENCE; SYSTEMS; ORBITS;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The Three-Body Problem has been a recurrent theme of Poincare's thought. Having understood very early the need for a qualitative study of "non-integrable" differential equations, he developed the necessary fundamental tools: analysis, of course, but also topology, geometry, probability. One century later, mathematicians working on the Three-Body Problem still draw inspiration from his works, in particular in the three volumes of Les methodes nouvelles de la mecanique celeste published respectively in 1892, 1893, 1899.
引用
收藏
页码:51 / 149
页数:99
相关论文
共 143 条
[61]  
Moser J., 1978, MATH INTELL, V1, P65
[62]  
Moser J., 1973, Stable and Random Motions in Dynamical Systems
[63]  
Nekhoroshev N., 1979, T SEM PETROVS, V5, P5
[64]  
Newton Isaac., OPTICKS TREATISE REF
[65]   Stability over exponentially long times in the planetary problem [J].
Niederman, L .
NONLINEARITY, 1996, 9 (06) :1703-1751
[66]  
Poincar? Henri., 1896, CR HEBD ACAD SCI, V123, P915
[67]  
POINCARE H, 1908, B ASTRON, V25, P321
[68]  
Poincare H, 1957, New Methods of Celestial Mechanics, VI-III
[69]  
Poincare H., 1884, Bull. Astronomique, V1, P65
[70]  
POINCARE H, 1910, LECONS MECANIQUE CEL