Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modelling

被引:91
|
作者
Chan, YC [1 ]
Simpson, RW
Mctainsh, GH
Vowles, PD
Cohen, DD
Bailey, GM
机构
[1] Griffith Univ, Sch Australian Environm Studies, Nathan, Qld 4111, Australia
[2] Australian Nucl Sci & Technol Org, Div Phys, Menai, NSW 2234, Australia
关键词
urban PM2.5 and PM10; chemical mass balance; target transformation factor analysis; multiple linear regression; motor vehicle exhausts;
D O I
10.1016/S1352-2310(99)00090-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerosol samples for PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 and 10 mu m, respectively) were collected from 1993 to 1995 at five sites in Brisbane, a subtropical coastal city in Australia. This paper investigates the contributions of emission sources to PM2.5 and PM10 aerosol mass in Brisbane. Source apportionment results derived from the chemical mass balance (CMB), target transformation factor analysis (TTFA) and multiple linear regression (MLR) methods agree well with each other. The contributions from emission sources exhibit large variations in particle size with temporal and spatial differences. On average, the major contributors of PM,, aerosol mass in Brisbane include: soil/road side dusts (25% by mass), motor vehicle exhausts (13%, not including the secondary products), sea salt (12%), Ca-rich and Ti-rich compounds (11%, from cement works and mineral processing industries), biomass burning (7%), and elemental carbon and secondary products contribute to around 15% of the aerosol mass on average. The major sources of PM2.5 aerosols at the Griffith University (GU) site (a suburban site surrounded by forest area) are: elemental carbon (24% by mass), secondary organics (21%), biomass burning (15%) and secondary sulphate (14%). Most of the secondary products are related to motor vehicle exhausts, so, although motor vehicle exhausts contribute directly to only 6% of the PM2.5 aerosol mass, their total contribution (including their secondary products) could be substantial, This pattern of source contribution is similar to the results for Rozelle (Sydney) among the major Australian studies, and is less in contributions from industrial and motor vehicular exhausts than the other cities. An attempt was made to estimate the contribution of rural dust and road side dust, The results show that road side dusts could contribute more than half of the crustal matter. More than 80% of the contribution of vehicle exhausts arises from diesel-fuelled trucks/buses. Biomass burning, large contributions of crustal matter, and/or local contributing sources under calm weather conditions, are often the cause of the high PM10 episodes at the GU site in Brisbane. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3251 / 3268
页数:18
相关论文
共 50 条
  • [11] Fireworks—a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols
    Luka Pirker
    Žiga Velkavrh
    Agnese Osīte
    Luka Drinovec
    Griša Močnik
    Maja Remškar
    Air Quality, Atmosphere & Health, 2022, 15 : 1275 - 1286
  • [12] Source apportionment of PM10 and PM2.5 in a desert region in northern Chile
    Jorquera, Hector
    Barraza, Francisco
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 444 : 327 - 335
  • [13] Fireworks-a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols
    Pirker, Luka
    Velkavrh, Ziga
    Osite, Agnese
    Drinovec, Luka
    Mocnik, Grisa
    Remskar, Maja
    AIR QUALITY ATMOSPHERE AND HEALTH, 2022, 15 (07): : 1275 - 1286
  • [14] Distribution Characteristics and Source Apportionment of Elements Bonded with PM2.5 and PM10 in Linyi
    Lu P.
    Zhao X.-Y.
    Yin B.-H.
    Zhang N.
    Wang X.-H.
    Yu H.
    Yang W.
    Wang X.-L.
    Huanjing Kexue/Environmental Science, 2020, 41 (05): : 2036 - 2043
  • [15] Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination
    Samek, Lucyna
    Stegowski, Zdzislaw
    Furman, Leszek
    NUKLEONIKA, 2016, 61 (01) : 75 - 83
  • [16] Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia
    Khodeir, Mamdouh
    Shamy, Magdy
    Alghamdi, Mansour
    Zhong, Mianhua
    Sun, Hong
    Costa, Max
    Chen, Lung-Chi
    Maciejczyk, Polina
    ATMOSPHERIC POLLUTION RESEARCH, 2012, 3 (03) : 331 - 340
  • [17] The chemical characterization and source apportionment of PM2.5 and PM10 in a typical city of Northeast China
    Dong, Deming
    Qiu, Tao
    Du, Shanshan
    Gu, Yu
    Li, Anfeng
    Hua, Xiuyi
    Ning, Yang
    Liang, Dapeng
    URBAN CLIMATE, 2023, 47
  • [18] Source apportionment of PM10 and PM2.5 in five Chilean cities using factor analysis
    Kavouras, IG
    Koutrakis, P
    Cereceda-Balic, F
    Oyola, P
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2001, 51 (03) : 451 - 464
  • [19] Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China
    Wang Hailin
    Zhuang Yahui
    Wang Ying
    Sun Yele
    Yuan Hui
    Zhuang Guoshun
    Hao Zhengping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2008, 20 (11) : 1323 - 1327