A modeled Bose system consisting of N particles with two-body interaction confined within volume V under inhomogeneity of the system is investigated using the Feynman path integral approach. The two-body interaction energy is assumed to be dependent on the two-parameter interacting strength a and the correlation length l. The inhomogeneity of the system or the porosity can be represented as density (n) over bar. with interacting strength b and correlation length L. The mean field approximation on the two-body interaction in the Feynman path integrals representation is performed to obtain the onebody interaction. This approximation is equivalent to the Hartree approximation in the many-body electron gas problem. This approximation has shown that the calculation can be reduced to the effective one-body propagator. Performing the variational calculations, we obtain analytical results of the ground state energy which is in agreement with that from Bugoliubov's approach.
机构:
Univ Estado Rio De Janeiro, Inst Politecn, BR-28625570 Nova Friburgo, RJ, BrazilUniv Estado Rio De Janeiro, Inst Politecn, BR-28625570 Nova Friburgo, RJ, Brazil
Arias, E.
Krein, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, BrazilUniv Estado Rio De Janeiro, Inst Politecn, BR-28625570 Nova Friburgo, RJ, Brazil
Krein, G.
Menezes, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rural Rio De Janeiro, Dept Fis, Grp Fis Teor & Matemat Fis, BR-23897000 Seropedica, RJ, BrazilUniv Estado Rio De Janeiro, Inst Politecn, BR-28625570 Nova Friburgo, RJ, Brazil
Menezes, G.
Svaiter, N. F.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Brasileiro Pesquisas Fis, BR-22299018 Rio De Janeiro, RJ, BrazilUniv Estado Rio De Janeiro, Inst Politecn, BR-28625570 Nova Friburgo, RJ, Brazil