Zirconium-based nanostructured coating on the Mg-4Y-3RE alloy for corrosion retardation

被引:12
作者
Jin, Weihong [1 ,2 ,3 ]
Zhou, Haili [1 ]
Li, Jingyao [1 ]
Ruan, Qingdong [2 ,3 ]
Li, Jian [1 ]
Peng, Xiang [4 ]
Li, Wei [1 ]
Chu, Paul K. [1 ,2 ,3 ]
机构
[1] Jinan Univ, Inst Adv Wear & Corros Resistant & Funct Mat, Guangzhou 510632, Peoples R China
[2] City Univ Hong Kong, Dept Mat Sci & Engn, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Engn, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[4] Wuhan Inst Technol, Sch Mat Sci & Engn, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
关键词
Nanostructured coating; Corrosion; Magnesium alloys; Surface modi fication; Zirconium; IN-VITRO CORROSION; MAGNESIUM ALLOYS; ZRN FILMS; MG ALLOY; RESISTANCE; CYTOCOMPATIBILITY; BEHAVIOR; MICROSTRUCTURE; IMPLANTATION; DEGRADATION;
D O I
10.1016/j.cplett.2020.137824
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Clinical application of magnesium (Mg) alloys to biomedical implants is hampered by the fast degradation rate in the physiological environment. Herein, a zirconium-based (ZB) nanostructured coating composed of mainly zirconium nitride and oxynitride is prepared by reactive magnetron sputtering to mitigate corrosion of the Mg-4Y-3RE alloy. The ZB coating reduces the corrosion current density, increases the charge transfer resistance, and hinders the corrosion propagation of the Mg alloy in the simulated body fluid revealing retarded dissolution of the Mg alloy. The enhanced corrosion resistance of the Mg alloy stems from the dense and strongly adhering ZB coating.
引用
收藏
页数:6
相关论文
共 41 条
[11]   Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy [J].
Jin, Weihong ;
Wang, Guomin ;
Lin, Zhengjie ;
Feng, Hongqing ;
Li, Wan ;
Peng, Xiang ;
Qasim, Abdul Mateen ;
Chu, Paul K. .
CORROSION SCIENCE, 2017, 114 :45-56
[12]   Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation [J].
Jin, Weihong ;
Wu, Guosong ;
Feng, Hongqing ;
Wang, Wenhao ;
Zhang, Xuming ;
Chu, Paul K. .
CORROSION SCIENCE, 2015, 94 :142-155
[13]  
Jones D.A., 1996, Principles and Prevention of Corrosion, VSecond
[14]   Magnetron sputtering: a review of recent developments and applications [J].
Kelly, PJ ;
Arnell, RD .
VACUUM, 2000, 56 (03) :159-172
[15]   In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition [J].
Li, Chang-Yang ;
Yu, Chi ;
Zeng, Rong-Chang ;
Zhang, Bo-Cheng ;
Cui, Lan-Yue ;
Wan, Jun ;
Xia, Yang .
BIOACTIVE MATERIALS, 2020, 5 (01) :34-43
[16]   Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface [J].
Li, Xia ;
Liu, Xiangmei ;
Wu, Shuilin ;
Yeung, K. W. K. ;
Zheng, Yufeng ;
Chu, Paul K. .
ACTA BIOMATERIALIA, 2016, 45 :2-30
[17]   Validation of corrosion rates measured by the Tafel extrapolation method [J].
McCafferty, E .
CORROSION SCIENCE, 2005, 47 (12) :3202-3215
[18]   Zirconium Alloys for Orthopaedic and Dental Applications [J].
Mehjabeen, Afrin ;
Song, Tingting ;
Xu, Wei ;
Tang, Hui Ping ;
Qian, Ma .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[19]  
Moulder JF, 1992, HDB XRAY PHOTOELECTR
[20]   Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation [J].
Muneshwar, Triratna ;
Cadien, Ken .
APPLIED SURFACE SCIENCE, 2018, 435 :367-376