Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism

被引:21
|
作者
Kiriyama, Kentaro [1 ]
Hara, Kiyotaka Y. [2 ]
Kondo, Akihiko [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Org Adv Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
Oxidized glutathione; Yeast; Saccharomyces cerevisiae; Metabolic engineering; Cell factory; OXIDATIVE STRESS; YEAST; PEROXIDASE; CELLS; TRANSFORMATION; ANTIOXIDANT;
D O I
10.1007/s00253-013-5074-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Intracellular glutathione exists in two forms, reduced glutathione (GSH) and oxidized glutathione (GSSG). Most of the glutathione produced by fermentation using yeast is in the GSH form because intracellular GSH concentration is higher than GSSG concentration. However, the stability of GSSG is higher than GSH, which makes GSSG more advantageous for industrial production and storage after extraction. In this study, an oxidized glutathione fermentation method using Saccharomyces cerevisiae was developed by following three metabolic engineering steps. First, over-expression of the glutathione peroxidase 3 (GPX3) gene increased the GSSG content better than over-expression of other identified peroxidase (GPX1 or GPX2) genes. Second, the increase in GSSG brought about by GPX3 over-expression was enhanced by the over-expression of the GSH1/GSH2 genes because of an increase in the total glutathione (GSH + GSSG) content. Finally, after deleting the glutathione reductase (GLR1) gene, the resulting GPX3/GSH1/GSH2 over-expressing Delta GLR1 strain yielded 7.3-fold more GSSG compared with the parental strain without a decrease in cell growth. Furthermore, use of this strain also resulted in an enhancement of up to 1.6-fold of the total glutathione content compared with the GSH1/GSH2 over-expressing strain. These results indicate that the increase in the oxidized glutathione content helps to improve the stability and total productivity of glutathione.
引用
收藏
页码:7399 / 7404
页数:6
相关论文
共 50 条
  • [1] Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism
    Kentaro Kiriyama
    Kiyotaka Y. Hara
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2013, 97 : 7399 - 7404
  • [2] Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae
    Hara, Kiyotaka Y.
    Aoki, Naoko
    Kobayashi, Jyumpei
    Kiriyama, Kentaro
    Nishida, Keiji
    Araki, Michihiro
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) : 9771 - 9778
  • [3] Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter
    Kiriyama, Kentaro
    Hara, Kiyotaka Y.
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 96 (04) : 1021 - 1027
  • [4] Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae
    Kiyotaka Y. Hara
    Naoko Aoki
    Jyumpei Kobayashi
    Kentaro Kiriyama
    Keiji Nishida
    Michihiro Araki
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2015, 99 : 9771 - 9778
  • [5] Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter
    Kentaro Kiriyama
    Kiyotaka Y. Hara
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2012, 96 : 1021 - 1027
  • [6] Enzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae
    Kobayashi, Jyumpei
    Sasaki, Daisuke
    Hara, Kiyotaka Y.
    Hasunuma, Tomohisa
    Kondo, Akihiko
    MICROBIAL CELL FACTORIES, 2017, 16
  • [7] Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae
    Yoshida, Hideyo
    Arai, Shogo
    Hara, Kiyotaka Y.
    Yamada, Ryosuke
    Ogino, Chiaki
    Fukuda, Hideki
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (05) : 1417 - 1422
  • [8] Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae
    Chen, Jia-li
    Xie, Liang
    Cai, Jing-jing
    Yang, Cheng-shuai
    Duan, Xue-hui
    BIOTECHNOLOGY LETTERS, 2013, 35 (08) : 1259 - 1264
  • [9] 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae
    Hara, Kiyotaka Y.
    Saito, Masaru
    Kato, Hiroko
    Morikawa, Kana
    Kikukawa, Hiroshi
    Nomura, Hironari
    Fujimoto, Takanori
    Hirono-Hara, Yoko
    Watanabe, Shigeyuki
    Kanamaru, Kengo
    Kondo, Akihiko
    MICROBIAL CELL FACTORIES, 2019, 18 (01)
  • [10] Glutathione production by Saccharomyces cerevisiae: current state and perspectives
    Santos, Lucielen Oliveira
    Pereira Silva, Pedro Garcia
    Lemos Junior, Wilson Jose Fernandes
    de Oliveira, Vanessa Sales
    Anschau, Andreia
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2022, 106 (5-6) : 1879 - 1894